The used 1H NMR for Screening on Streptomyces spp. and Identification of Metabolites Involved in Both Antifungal and Non-antifungal Producer for Colletotrichum gleosporioides

Authors

  • Jeffrey Lim Seng Heng Biological control Programme, Agrobiodiversity and Environmental Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, MALAYSIA
  • Norzaimawati Aman Nejis Biological control Programme, Agrobiodiversity and Environmental Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, MALAYSIA
  • Halizah Hamzah Biological control Programme, Agrobiodiversity and Environmental Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, MALAYSIA

DOI:

https://doi.org/10.53797/agrotech.v3i1.6.2024

Keywords:

Metabolites, Antifungal activity, Streptomyces spp., Colletotrichum gleosporioides, Nuclear Magnetic Resonace

Abstract

Streptomyces spp. had been well known for their antimicrobial activities. These activities were due to the presence of certain metabolites in the Streptomyces spp.  In this study, Streptomyces spp. with the ability to produce antimicrobial activity and those without activity were grown in Starch Casein Broth (SCB) for 3 days before the metabolites were extracted using the liquid-liquid partition method. The obtained extracts were then subjected to 1H Nuclear Magnetic Resonance (NMR) analysis to obtain the metabolites presence in both antifungal producing and non-antifungal producing Streptomyces spp. From the analysis, it was observed that valine, isoleucine, leucine, asparagine, α-glucose, and fructose were present in antifungal producing Streptomyces spp., while only fatty acid and lactic acid were observed for non-antifungal producing Streptomyces spp. The use of 1H NMR does not only help in identifying Streptomyces spp. with potential antifungal ability but can also help in identifying the Streptomyces spp.

Downloads

Download data is not yet available.

References

Alam, K., Mazumder, A., Sikdar, S., Zhao, Y.M, Hao, J., Song, C., Wang, Y, Sarkar, Islam, S., Zhang, Y. & Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Frontier Microbiology, 13. https://doi.org/10.3389/fmicb.2022.968053.

Beccaccioli, M., Pucci, N., Salustri, M., Scortichini, M., Zaccaria, M., Momeni, B., Loreti, S., Reverberi, M. & Scala, V. (2022). Fungal and bacterial oxylipins are signals for intra- and inter-cellular communication within plant disease. Frontier in Plant Science, 13:823233. https://doi: 10.3389/fpls.2022.823233.

Betancur, L.A., Forero, A.M., Vinchira-Villarrage, D.M., Cardenas, J.D., Romero-Otero, A., Chagas Pupo, M.T., Castellanos, L. & Ramos, F.A. 2020. NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Sytreptomyces sp. PNM-9. Microbiology Research, 239: 1-8. https://doi.org/10.1016/j.micres.2020.126507.

Debik, J., Sangermani, M., Wang, F., Madssen, T.S. & Giskeødegård, G.F. (2022). Multivariate analysis of NMR-based metabolomic data. NMR in Biomedicine, 35(2): e4638. https://doi:10.1002/nbm.4638.

Einloft, T.C., de Oliveira, P.B., Radunz, L.L. & Dionello, R.G. (2021). Biocontrol capabilities of three Bacillus isolates towards aflatoxin B1 producer A. flavus in vitro and on maize grains. Food Control, 125:107978. https://doi.org/10.1016/j.foodcont.2021.107978

Ezeonuegbu, B.A., Abdullahi, M.D., Whong, C.M.Z., Sohunago, J.W., Kassem, H.S., Yaro, C.A., Hetta, H.F., Mostafa-Hedead, G., Zouganelis, G.D. & Batiha, G.E.S. (2022). Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes. Scientific Reports, 12, 2094. https://doi.org/10.1038/s41598-022-05820-9.

Getha, K. & Vikineswary, S. (2002). Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology Biotechnology, 28 (6): 303-310. https://doi.org/10.1038/sj/jim/7000247

Jiang, L., Sullivan, H. & Wang, B. (2022). Principal component analysis (PCA) loading and statistical tests for Nuclear Magnetic Resonance (NMR) metabolomics involving multiple study groups. Analytics Letters, 55 (10): 1648-1662. https://doi.org/10.1080/00032719.2021.2019758.

Li, X., Zhang, M., Qi, D., Zhou, D., Qi, C., Li, C., Liu, S., Xiang, D., Zhang, L., Xie, J. and Wang, W. (2021). Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Frontiers in Microbiology, 12: 735732. http://doi.org/10.3389/fmicb.2021.735732

Mariam. M., Ohno, T., Suzuki, H., Kitamaru, H., Kuroda, K. & Shimizu, M. (2020). A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulate. Microbiological Research. 234: 126428. https://doi.org/10.1016/j.micres.2020.126428.

Quinn, G.A., Banat, A.M., Abdelhameed, A.M. & Banat, I.M. (2020). Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. Journal of Medical Microbiology, 69(8):1040-1048. https://doi: 10.1099/jmm.0.001232.

Rosa, C.S., Siti, S., Arif, W. & Ani, W. (2022). Description and Pathogenicity of Colletotrichum Species Causing Chili Anthracnose in Yogyakarta, Indonesia. Journal of Agricultural Science. 44(2): 312-321. http://doi.org/10.17503/agrivita.v44i2.3705.

Spina, R., Saliba, S., Dupire, F., Ptak, A., Hehn, A., Piutti, S., Poinsignon, S., Leclerc, S., Bouguet-Bonnet, S., & Laurain-Mattar, D. (2021). Molecular Identification of Endophytic Bacteria in Leucojum aestivum In Vitro Culture, NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production. International Journal of Molecular Sciences, 22, 1773. https://doi.org/10.3390/ijms22041773

Tangerina, M.M.P., Furtado, L.C., Leite, V.M.B., Bauermeister, A., Velasco-Alzate, K., Jimenez, P.C., Garrido, L.M., Padilla, G., Lopes, N.P., Costa-Lotufo, L.V & Ferreira, M.J.P. (2020). Metabolomic study of marine Streptomyces sp.: Secondary metabolites and the production of potential anticancer compounds. PLOS ONE, 15(12): e0244385. https://doi.org/10.1371/journal.pone.0244385.

Wang, Y., Zhu, G., Wang, W., Zhang, L., Zhu, Y., Wang, J., Geng, M., Lu, H., Chen, Y., Zhou, M., Chen, J., Zhang, F., Yang, J. & Cheng X. (2023). Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorganic & Medicinal Chemistry Letters, 83(1): 129176. https://doi.org/10.1016/j.bmcl.2023.129176.

Zhong, C., Zhu, N., Zhu, Y., Liu, T., Gou, S., Xie, J., Yao, J & Ni, J. 2020. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. European Journal of Pharmaceutical Sciences, 141: 105123. https://doi.org/10.1016/j.ejps.2019.105123.

Downloads

Published

2024-07-20

How to Cite

Lim , J. S. H., Aman Nejis, N., & Hamzah, H. (2024). The used 1H NMR for Screening on Streptomyces spp. and Identification of Metabolites Involved in Both Antifungal and Non-antifungal Producer for Colletotrichum gleosporioides . AgroTech- Food Science, Technology and Environment, 3(1), 36-43. https://doi.org/10.53797/agrotech.v3i1.6.2024