Harnessing Rhamnolipids from Waste Glycerol for Effective Biocontrol of Fungal Pathogens in Cucumber and Melon Plants

Authors

  • Adieya Atyrrah Adnan Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA
  • Khairulmazmi Ahmad Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA
  • Mohd Sabri Pak Dek Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, MALAYSIA
  • Mohd Rafein Zakaria Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA

DOI:

https://doi.org/10.53797/agrotech.v3i2.7.2024

Keywords:

Rhamnolipid, Postharvest, Preservative, Fungal Pathogens, Fruits and vegetables

Abstract

Effective postharvest management is essential to maintaining the quality and safety of fruits and vegetables, particularly in preventing decay caused by fungal pathogens. This study explored the potential of rhamnolipids (RLs), a biofungicide derived from waste glycerol, to control fungal infections and enhance the postharvest quality of tomatoes, cucumbers, and mangoes. Initial experiments identified pathogenic fungi impacting these fruits, with Botrytis cinerea, Colletotrichum capsici, and Phytophthora palmivora showing the highest virulence in tomatoes, cucumbers, and mangoes, respectively. However, the primary focus was on evaluating RLs' efficacy in mitigating disease severity and reducing postharvest decay, weight loss, and total soluble solids (TSS) content. RL-treated fruits demonstrated significant improvements in postharvest quality: by day six, RL treatment reduced decay and weight loss in all fruits compared to untreated controls, with RL-treated tomatoes, cucumbers, and mangoes showing decay levels of 22.63%, 15.98%, and 50% respectively, alongside controlled weight loss. Interestingly, RL-treated cucumbers also exhibited an increase in TSS (3.4) even under pathogen pressure, suggesting enhanced sugar content and improved quality. Overall, these findings highlight RLs as a promising biocontrol agent, capable of managing fungal infections while preserving fruit quality during storage. This work underscores the potential of RLs in developing sustainable postharvest interventions against fungal pathogens.

Downloads

Download data is not yet available.

Author Biographies

Khairulmazmi Ahmad, Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA

Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, 43400, Serdang, Selangor, MALAYSIA

Mohd Rafein Zakaria, Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA

Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, MALAYSIA

References

Baskaran, S. M., Zakaria, M. R., Sabri, A. S. M. A., Mohamed, M. S., Wasoh, H., Toshinari, M., Hassan, M. A. & Banat, I. M. (2021). Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Environmental Pollution 28(30): 40283-40293. https://doi.org/10.1016/j.envpol.2021.116742

Botcazon, C., Bergia, T., Lecouturier, D., Dupuis, C., Rochex, A., Acket, S., Nicot, P., Leclère, V., Sarazin, C., & Rippa, S. (2022). Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms. Frontiers in Microbiology 13:977633. https://doi.org/10.3389/fmicb.2022.977633

Broeckaert, W. F., Demetter, P., Cuvelier, C. A., & Schuit, F. C. (1990). Activation of progelatinase A by mammalian tissue collagenase. Journal of Biological Chemistry 265(34): 20058-20062. https://doi.org/10.1515/bc.2001.093

Cruz, A., Condinho, M., Carvalho, B., Arraiano, C. M., Pobre, V., & Pinto, S. N. (2021) The Two Weapons against Bacterial Biofilms: Detection and Treatment. Antibiotics (Basel). 10(12):1482. https://doi.org/10.3390/antibiotics10121482

Deepika, K. V., Sridar, P. R. & Bramhachari, P. V. (2015). Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatalysis and Agricultural Biotechnology 4:608-615. https://doi.org/10.1016/j.bcab.2015.09.009

Duke S. O., Pan Z., Chittiboyina A. G., Swale D. R., & Sparks T. C. (2023). Molecular targets of insecticides and herbicides – are there useful overlaps for fungicide discovery? Journal of Agricultural and Food Chemistry 71(51): 20532-20548. https://doi.org/10.1016/j.pestbp.2023.105340

El-Naggar, M. A., El-Deeb, M. H., & Seham, R. S. (2012). Applied approach for controlling powdery mildew disease of cucumber under plastic houses. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences 28: 54–64. https://agris.fao.org/search/en/providers/122650/records/647369b908fd68d546063274

Food and Agriculture Organization of the United Nations (FAO), Report on global crop production and production. 2024. Retrieved from https://www.fao.org/plant-production-protection (accessed 6 March 2024).

Goswami, D., Borah, S. N., Lahkar, J., Handique, P. J. & Deka, S. (2015). Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. Journal of Basic Microbiology 55:1- 10. https://doi.org/10.1002/jobm.201500220

Gow, N. A. R., Latge, J., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum. 5:10.1128. https://doi.org/10.1128/microbiolspec.funk-0035-2016

Hadi, S. M. H. S. A., Nasir, M. S., Md Noh, N. A., Mohd Yahya, A. R. & Mohamed Nor, N. M. I. (2022). The potential of rhamnolipid as biofungicide against Rigidoporus microporus isolated from rubber tree (Hevea brasiliensis). Pertanika Journal of Tropical Agricultural Science 45(1):285-299. http://dx.doi.org/10.47836/pjtas.45.1.17

Hafez, Y.M., Attia, K.A., Kamel, S., Alamery, S.F., El-Gendy, S., Al-Doss, A.A., Mehiar, F., Ghazy, A.I., Ibrahim, E.I., & Abdelaal, K.A.A. (2020). Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiological and Molecular Plant Pathology 111, 101489. https://doi.org/10.1016/j.pmpp.2020.101489

Irma, A., Meryandini, A. & Rupaedah, B. (2018). Biofungicide Producing Bacteria: An in vitro inhibitor of Ganoderma boninense. HAYATI Journal of Bioscience 25(4):151-159. http://dx.doi.org/10.4308/hjb.25.4.151

Kim, B. S., Lee, J. Y. & Hwang, B. K. (2000). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag. Sci. 56:1029-1035. http://dx.doi.org/10.1002/1526-4998(200012)56:12%3C1029::AID-PS238%3E3.0.CO;2-Q

Lopez, M. H., Gutierrez-Martinez, P., & Córdova-Albores, L. C. (2012). Current microscopy contributions to advances in science and technology (pp.401-405) Edition: I Chapter: Use of scanning and transmission electron microscopy to identify morphological and cellular damage on phytopathogenic fungi due to natural products application. Publisher: Formatex Research Center. https://www.researchgate.net/publication/270219462_Use_of_scanning_and_transmission_electron_microscopy_to_identify_morphological_and_cellular_damage_on_phytopathogenic_fungi_due_to_natural_products_application

Luna, J. M., Rufino, R. D., Sarubbo, L. A., Lígia, R. R., Jose, A. T., Galba, M. de C. T., Rodrigues, L. R. M., Teixeira, J. A. C., & de Campos-Takaki, G. M. (2011). Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Current Microbiology 62: 1527-1534. https://doi.org/10.1007/s00284-011-9889-1

Monnier, N., Cordier, M., Dahi, A., Santoni, V., Guénin, S., Clément, C., Sarazin, C., Penaud, A., Dorey, S., Cordelier, S., & Rippa, S. (2020). Semipurified Rhamnolipid Mixes Protect Brassica napus Against Leptosphaeria maculans Early Infections. Phytopathology, 110(4), 834–842. https://doi.org/10.1094/PHYTO-07-19-0275-R

Naher, L., Tan, S. G., Yusuf, U. K., Ho, C. L., & Siddiquee, S. (2012). Activities of chitinase enzymes in the oil palm (Elaeis guineensis Jacq.) in interaction with pathogenic and non-pathogenic fungi. Plant Omics Journal 5:333-336. https://www.researchgate.net/publication/230667114_Activities_of_chitinase_enzymes_in_the_oil_palm_Elaeis_guineensis_Jacq_In_interactions_with_pathogenic_and_non-pathogenic_fungi

Nalini, S., & Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 16(2), 108–115. https://doi.org/10.1016/j.aasci.2017.11.002

Paramalingam, P., Kheiril Anuar, M. S., Baharum, N. A., Abdullah, J. O., Aziz, J. A., & Saidi, N. B. (2021). In vitro evaluation of antifungal activity of selected malaysian plants against the wilt pathogen of banana, Fusarium oxysporum f.sp. cubense Tropical Race 4, Malaysian Journal of Science, 40(2): 16-24. https://doi.org/10.22452/mjs.vol40no2.2

Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology 13:962619. https://doi.org/10.3389/fmicb.2022.962619

Ramli N. R. (2016). The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malaysia 45:401-409. https://www.researchgate.net/publication/302214339_The_potential_of_endophytic_bacteria_as_a_biological_control_agent_for_Ganoderma_disease_in_oil_palm

Robineau, M., Le Guenic, S., Sanchez, L., Chaveriat, L., Lequart, V., Joly, N., Calonne, M., Jacquard, C., Declerck, S., Martin, P., Dorey, S., & Ait Barka, E. (2020). Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules, 25(14), 3108. https://doi.org/10.3390/molecules25143108

Seo, Y., & Kim, Y. H. (2017). Pathological interrelations of soil-borne diseases in cucurbits caused by Fusarium species and Meloidogyne incognita. Plant Pathology Journal 33(4): 410-423. https://doi.org/10.5423/PPJ.OA.04.2017.0088

Sha, R., Jiang, L., Meng, Q., Zhang, G., & Song, Z. (2012). Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. Journal of Basic Microbiology 52(4):458–466. https://doi.org/10.1002/jobm.201100295

Shalini, D., Benson, A., Gomathi, R., Henry, A. J., Jerritta, S., & Joe, M. M. (2017). Isolation, characterization of glycolipid type biosurfactant from endophytic Acinetobacter sp. ACMS25 and evaluation of its biocontrol efficiency against Xanthomonas oryzae. Biocatal. Agric. Biotechnol. 11:252-258. http://dx.doi.org/10.1016/j.bcab.2017.07.013

Smyth, T. J. P., Perfumo, A., Marchant, R., & Banat, I. M. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology Berlin, pp. 3705-3723. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_291

Tanaka, K., Fukuda, M., Amaki, Y., Sakaguchi, T., Inai, K., Ishihara, A., & Nakajima, H. (2017). Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest Management Science 73:12. https://doi.org/10.1002/ps.4630

Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University SCIENCE B, 9(10), 764–778. https://doi.org/10.1631/jzus.B0860007

Yoo, D. S., Lee, B. S., & Kim, E. K. (2005). Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. Journal of Microbiology and Biotechnology. 15(6): 1164-1169. https://www.researchgate.net/publication/279699588_Characteristics_of_microbial_biosurfactant_as_an_antifungal_agent_against_plant_pathogenic_fungus

Downloads

Published

2024-12-29

How to Cite

Adnan, . A. A., Ahmad, . K., Pak Dek, . M. S., & Zakaria, M. R. (2024). Harnessing Rhamnolipids from Waste Glycerol for Effective Biocontrol of Fungal Pathogens in Cucumber and Melon Plants . AgroTech- Food Science, Technology and Environment, 3(2), 64-76. https://doi.org/10.53797/agrotech.v3i2.7.2024