Harnessing Rhamnolipids from Waste Glycerol for Effective Biocontrol of Fungal Pathogens in Cucumber and Melon Plants
DOI:
https://doi.org/10.53797/agrotech.v3i2.7.2024Keywords:
Rhamnolipid, Postharvest, Preservative, Fungal Pathogens, Fruits and vegetablesAbstract
Effective postharvest management is essential to maintaining the quality and safety of fruits and vegetables, particularly in preventing decay caused by fungal pathogens. This study explored the potential of rhamnolipids (RLs), a biofungicide derived from waste glycerol, to control fungal infections and enhance the postharvest quality of tomatoes, cucumbers, and mangoes. Initial experiments identified pathogenic fungi impacting these fruits, with Botrytis cinerea, Colletotrichum capsici, and Phytophthora palmivora showing the highest virulence in tomatoes, cucumbers, and mangoes, respectively. However, the primary focus was on evaluating RLs' efficacy in mitigating disease severity and reducing postharvest decay, weight loss, and total soluble solids (TSS) content. RL-treated fruits demonstrated significant improvements in postharvest quality: by day six, RL treatment reduced decay and weight loss in all fruits compared to untreated controls, with RL-treated tomatoes, cucumbers, and mangoes showing decay levels of 22.63%, 15.98%, and 50% respectively, alongside controlled weight loss. Interestingly, RL-treated cucumbers also exhibited an increase in TSS (3.4) even under pathogen pressure, suggesting enhanced sugar content and improved quality. Overall, these findings highlight RLs as a promising biocontrol agent, capable of managing fungal infections while preserving fruit quality during storage. This work underscores the potential of RLs in developing sustainable postharvest interventions against fungal pathogens.
Downloads
References
Baskaran, S. M., Zakaria, M. R., Sabri, A. S. M. A., Mohamed, M. S., Wasoh, H., Toshinari, M., Hassan, M. A. & Banat, I. M. (2021). Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Environmental Pollution 28(30): 40283-40293. https://doi.org/10.1016/j.envpol.2021.116742
Botcazon, C., Bergia, T., Lecouturier, D., Dupuis, C., Rochex, A., Acket, S., Nicot, P., Leclère, V., Sarazin, C., & Rippa, S. (2022). Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms. Frontiers in Microbiology 13:977633. https://doi.org/10.3389/fmicb.2022.977633
Broeckaert, W. F., Demetter, P., Cuvelier, C. A., & Schuit, F. C. (1990). Activation of progelatinase A by mammalian tissue collagenase. Journal of Biological Chemistry 265(34): 20058-20062. https://doi.org/10.1515/bc.2001.093
Cruz, A., Condinho, M., Carvalho, B., Arraiano, C. M., Pobre, V., & Pinto, S. N. (2021) The Two Weapons against Bacterial Biofilms: Detection and Treatment. Antibiotics (Basel). 10(12):1482. https://doi.org/10.3390/antibiotics10121482
Deepika, K. V., Sridar, P. R. & Bramhachari, P. V. (2015). Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatalysis and Agricultural Biotechnology 4:608-615. https://doi.org/10.1016/j.bcab.2015.09.009
Duke S. O., Pan Z., Chittiboyina A. G., Swale D. R., & Sparks T. C. (2023). Molecular targets of insecticides and herbicides – are there useful overlaps for fungicide discovery? Journal of Agricultural and Food Chemistry 71(51): 20532-20548. https://doi.org/10.1016/j.pestbp.2023.105340
El-Naggar, M. A., El-Deeb, M. H., & Seham, R. S. (2012). Applied approach for controlling powdery mildew disease of cucumber under plastic houses. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences 28: 54–64. https://agris.fao.org/search/en/providers/122650/records/647369b908fd68d546063274
Food and Agriculture Organization of the United Nations (FAO), Report on global crop production and production. 2024. Retrieved from https://www.fao.org/plant-production-protection (accessed 6 March 2024).
Goswami, D., Borah, S. N., Lahkar, J., Handique, P. J. & Deka, S. (2015). Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. Journal of Basic Microbiology 55:1- 10. https://doi.org/10.1002/jobm.201500220
Gow, N. A. R., Latge, J., & Munro, C. A. (2017). The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum. 5:10.1128. https://doi.org/10.1128/microbiolspec.funk-0035-2016
Hadi, S. M. H. S. A., Nasir, M. S., Md Noh, N. A., Mohd Yahya, A. R. & Mohamed Nor, N. M. I. (2022). The potential of rhamnolipid as biofungicide against Rigidoporus microporus isolated from rubber tree (Hevea brasiliensis). Pertanika Journal of Tropical Agricultural Science 45(1):285-299. http://dx.doi.org/10.47836/pjtas.45.1.17
Hafez, Y.M., Attia, K.A., Kamel, S., Alamery, S.F., El-Gendy, S., Al-Doss, A.A., Mehiar, F., Ghazy, A.I., Ibrahim, E.I., & Abdelaal, K.A.A. (2020). Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiological and Molecular Plant Pathology 111, 101489. https://doi.org/10.1016/j.pmpp.2020.101489
Irma, A., Meryandini, A. & Rupaedah, B. (2018). Biofungicide Producing Bacteria: An in vitro inhibitor of Ganoderma boninense. HAYATI Journal of Bioscience 25(4):151-159. http://dx.doi.org/10.4308/hjb.25.4.151
Kim, B. S., Lee, J. Y. & Hwang, B. K. (2000). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag. Sci. 56:1029-1035. http://dx.doi.org/10.1002/1526-4998(200012)56:12%3C1029::AID-PS238%3E3.0.CO;2-Q
Lopez, M. H., Gutierrez-Martinez, P., & Córdova-Albores, L. C. (2012). Current microscopy contributions to advances in science and technology (pp.401-405) Edition: I Chapter: Use of scanning and transmission electron microscopy to identify morphological and cellular damage on phytopathogenic fungi due to natural products application. Publisher: Formatex Research Center. https://www.researchgate.net/publication/270219462_Use_of_scanning_and_transmission_electron_microscopy_to_identify_morphological_and_cellular_damage_on_phytopathogenic_fungi_due_to_natural_products_application
Luna, J. M., Rufino, R. D., Sarubbo, L. A., Lígia, R. R., Jose, A. T., Galba, M. de C. T., Rodrigues, L. R. M., Teixeira, J. A. C., & de Campos-Takaki, G. M. (2011). Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Current Microbiology 62: 1527-1534. https://doi.org/10.1007/s00284-011-9889-1
Monnier, N., Cordier, M., Dahi, A., Santoni, V., Guénin, S., Clément, C., Sarazin, C., Penaud, A., Dorey, S., Cordelier, S., & Rippa, S. (2020). Semipurified Rhamnolipid Mixes Protect Brassica napus Against Leptosphaeria maculans Early Infections. Phytopathology, 110(4), 834–842. https://doi.org/10.1094/PHYTO-07-19-0275-R
Naher, L., Tan, S. G., Yusuf, U. K., Ho, C. L., & Siddiquee, S. (2012). Activities of chitinase enzymes in the oil palm (Elaeis guineensis Jacq.) in interaction with pathogenic and non-pathogenic fungi. Plant Omics Journal 5:333-336. https://www.researchgate.net/publication/230667114_Activities_of_chitinase_enzymes_in_the_oil_palm_Elaeis_guineensis_Jacq_In_interactions_with_pathogenic_and_non-pathogenic_fungi
Nalini, S., & Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 16(2), 108–115. https://doi.org/10.1016/j.aasci.2017.11.002
Paramalingam, P., Kheiril Anuar, M. S., Baharum, N. A., Abdullah, J. O., Aziz, J. A., & Saidi, N. B. (2021). In vitro evaluation of antifungal activity of selected malaysian plants against the wilt pathogen of banana, Fusarium oxysporum f.sp. cubense Tropical Race 4, Malaysian Journal of Science, 40(2): 16-24. https://doi.org/10.22452/mjs.vol40no2.2
Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology 13:962619. https://doi.org/10.3389/fmicb.2022.962619
Ramli N. R. (2016). The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malaysia 45:401-409. https://www.researchgate.net/publication/302214339_The_potential_of_endophytic_bacteria_as_a_biological_control_agent_for_Ganoderma_disease_in_oil_palm
Robineau, M., Le Guenic, S., Sanchez, L., Chaveriat, L., Lequart, V., Joly, N., Calonne, M., Jacquard, C., Declerck, S., Martin, P., Dorey, S., & Ait Barka, E. (2020). Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules, 25(14), 3108. https://doi.org/10.3390/molecules25143108
Seo, Y., & Kim, Y. H. (2017). Pathological interrelations of soil-borne diseases in cucurbits caused by Fusarium species and Meloidogyne incognita. Plant Pathology Journal 33(4): 410-423. https://doi.org/10.5423/PPJ.OA.04.2017.0088
Sha, R., Jiang, L., Meng, Q., Zhang, G., & Song, Z. (2012). Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. Journal of Basic Microbiology 52(4):458–466. https://doi.org/10.1002/jobm.201100295
Shalini, D., Benson, A., Gomathi, R., Henry, A. J., Jerritta, S., & Joe, M. M. (2017). Isolation, characterization of glycolipid type biosurfactant from endophytic Acinetobacter sp. ACMS25 and evaluation of its biocontrol efficiency against Xanthomonas oryzae. Biocatal. Agric. Biotechnol. 11:252-258. http://dx.doi.org/10.1016/j.bcab.2017.07.013
Smyth, T. J. P., Perfumo, A., Marchant, R., & Banat, I. M. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology Berlin, pp. 3705-3723. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_291
Tanaka, K., Fukuda, M., Amaki, Y., Sakaguchi, T., Inai, K., Ishihara, A., & Nakajima, H. (2017). Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest Management Science 73:12. https://doi.org/10.1002/ps.4630
Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University SCIENCE B, 9(10), 764–778. https://doi.org/10.1631/jzus.B0860007
Yoo, D. S., Lee, B. S., & Kim, E. K. (2005). Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. Journal of Microbiology and Biotechnology. 15(6): 1164-1169. https://www.researchgate.net/publication/279699588_Characteristics_of_microbial_biosurfactant_as_an_antifungal_agent_against_plant_pathogenic_fungus
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 arsvot

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.