Efficacy of Rhamnolipids in Mitigating Postharvest Fungal Infections and Preserving Quality of Tomatoes, Cucumbers, and Mangoes
DOI:
https://doi.org/10.53797/agrotech.v3i2.5.2024Keywords:
Rhamnolipid, Postharvest, Preservative, Fungal Pathogens, Fruits and vegetablesAbstract
Effective postharvest management is essential to maintaining the quality and safety of fruits and vegetables, particularly in preventing decay caused by fungal pathogens. This study explored the potential of rhamnolipids (RLs), a biofungicide derived from waste glycerol, to control fungal infections and enhance the postharvest quality of tomatoes, cucumbers, and mangoes. Initial experiments identified pathogenic fungi impacting these fruits, with Botrytis cinerea, Colletotrichum capsici, and Phytophthora palmivora showing the highest virulence in tomatoes, cucumbers, and mangoes, respectively. However, the primary focus was on evaluating RLs' efficacy in mitigating disease severity and reducing postharvest decay, weight loss, and total soluble solids (TSS) content. RL-treated fruits demonstrated significant improvements in postharvest quality: by day six, RL treatment reduced decay and weight loss in all fruits compared to untreated controls, with RL-treated tomatoes, cucumbers, and mangoes showing decay levels of 22.63%, 15.98%, and 50% respectively, alongside controlled weight loss. Interestingly, RL-treated cucumbers also exhibited an increase in TSS (3.4) even under pathogen pressure, suggesting enhanced sugar content and improved quality. Overall, these findings highlight RLs as a promising biocontrol agent, capable of managing fungal infections while preserving fruit quality during storage. This work underscores the potential of RLs in developing sustainable postharvest interventions against fungal pathogens.
Downloads
References
Agriculture and Agri-Food Canada. (2014). An overview of the Canadian Agriculture and Agri-Food system. Ottawa, Canada. https://publications.gc.ca/collections/collection_2014/aac-aafc/A38-1-1-2014-eng.pdf
Ahmed, F. A., Sipes, B. S. & Alvarez, A. M. (2017). Postharvest diseases of tomato and natural products for disease management. African Journal of Agricultural Research, 12(9), 684-691. https://api.semanticscholar.org/CorpusID:56408804
Alemán-Ramirez, J., Pérez-Sariñana, B Y., Torres-Arellano, S., Saldaña-Trinidad, S., Longoria, A., & Sebastián, P. (2020). Bioethanol production from Ataulfo mango supplemented with vermicompost leachate. Catalysis Today, 353, 173-179. https://doi.org/10.1016/j.cattod.2019.07.028
Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology. 87, 21-26. https://doi.org/10.1016/j.postharvbio.2013.08.007
Arumugam, V., & Vadivel, E. (2013). Comparative study of maturity stages influenced by tomato under two different farming systems. Academic Journals, 8(28), 3784-3788. https://doi.org/10.5897/ajar2013.7372
Aslam, W., Noor, R. S., Hussain, F., Ameen, M., Ullah, S. & Chen, H. (2020). Evaluating morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis Sativus L.) grafted on cucurbitaceous rootstocks. Agriculture. 10, 101. https://doi.org/10.3390/agriculture10040101
Auerswald, H., Schwarz, D., Kornelson, C., Krumbein, A., & Brückner, B. (1999). Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Elsevier BV, 82(3-4), 227-242. https://doi.org/10.1016/S0304-4238(99)00058-8
Avinash, P., Ramathilaga, A., & Valarmathi, P. (2022). Hyperspectral remote sensing for discrimination for plant disease forecasting. Journal of Pharmacognosy and Phytochemistry, 11(4), 208-215. https://www.phytojournal.com/archives/2022/vol11issue4/PartC/11-4-17-202.pdf
Barth, M., Hankinson, T. R., Zhuang, H., & Breidt, F. (2009). Microbiological spoilage of fruits and vegetables. W. H. Sperber, M. P. Doyle (editions), Compendium of the Microbiological Spoilage of Foods and Beverages, Food Microbiology and safety. C springer science Business Media, LLC, pp13-183. https://doi.org/10.1007/978-1-4419-0826-1_6
Baskaran, S. M., Zakaria, M. R., Sabri, A. S. M. A., Mohamed, M. S., Wasoh, H., Toshinari, M., Mohd, A. H., & Banat, I. M. (2021). Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Environmental Pollution. 276, 116742. https://doi.org/10.1016/j.envpol.2021.116742.
Benyon, F., Summerell, B. A. & Burgess, L. W. (1996). Association of Fusarium species with root rot of Cymbidium orchids. Australasian Plant Pathology. 25, 226-228. https://doi.org/10.1071/AP96041
Brecht, J., Cherukuri, K., Tulio, A Z., Nunes, M C D N., & Simonne, A. (2010). Cultivar variability in the response of tomato fruit lycopene synthesis and antioxidant potential to a brief postharvest heat stress. Acta Horticulture., 1205-1213. https://doi.org/10.17660/ActaHortic.2010.877.164
Cofelice, M., Lopez, F., & Cuomo, F. (2019). Quality control of fresh-cut apples after coating application. Multidisciplinary Digital Publishing Institute, 8(6), 189-189. https://doi.org/10.3390/foods8060189
Crouzet, J., Arias, A A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., Hoff, G., Mazeyrat‐Gourbeyre, F., Baillieul, F., Clément, C., Ongena, M., & Dorey, S. (2020). Biosurfactants in plant protection against diseases: Rhamnolipids and lipopeptides case study. Frontiers Media, 8. https://doi.org/10.3389/fbioe.2020.01014
Cruz-Valenzuela M. R., Ayala-Soto R. E., Ayala-Zavala J. F., Espinoza-Silva B. A., González-Aguilar G. A., Martín-Belloso O., Soliva-Fortuny R., Nazzaro F., Fratianni F., Tapia-Rodríguez M. R., & Bernal-Mercado A. T. (2022). Pomegranate (Punica granatum L.) peel extracts as antimicrobial and antioxidant additives used in alfalfa sprouts. Foods. 6;11(17):2588. https://doi.org/10.3390/foods11172588
Dey, S. S., Bhatia, R., Bhardwaj, I., Mishra, V., Sharma, K., Parkash, C., & Kumar, R. (2017). Molecular-agronomic characterization and genetic study reveals usefulness of refined Ogura cytoplasm-based CMS lines in hybrid breeding of cauliflower (Brassica oleracea var. botrytis L.). Scientia Horticulturae. 224, 27–36. https://doi.org/10.1016/j.scienta.2017.05.032
Dissa, A O., Desmorieux, H., Degraeve, P., Bathiebo, J., & Koulidiati, J. (2011, May 26). Impact of fruit ripeness on physicochemical properties and convective drying characteristics of kent mango (Mangifera indica L. cv. 'Kent'). De Gruyter, 7(3). https://doi.org/10.2202/1556-3758.2126https://doi.org/10.2202/1556-3758.2126
Forato, L. A., Britto, D. D., Rizzo, J. S. D., Gastaldi, T. A., & Assis, O. B. G. (2015). Effect of cashew gum-carboxymethylcellulose edible coatings in extending the shelf-life of fresh and cut guavas. Elsevier BV, 5, 68-74. https://doi.org/10.1016/j.fpsl.2015.06.001
Gharezi M, Joshi N, & Sadeghian E. (2012). Effect of post-harvest treatment on stored cherry tomatoes. Journal of Nutrition & Food Sciences. 2:157. http://dx.doi.org/10.4172/2155-9600.1000157
Gol, N. B., Patel, P. R., & Rao, T. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology. 85, 185-195. https://doi.org/10.1016/j.postharvbio.2013.06.008
Gonorazky, G., Guzzo, M. C., Abd-El-Haliem, A. M., Joosten, M. H. A. J., & Laxalt, A. M. (2016). Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Molecular Plant Pathology, 17(9), 1354–1363. https://doi.org/10.1111/mpp.12365
González-Estrada, R R., Blancas‐Benítez, F J., Velázquez-Estrada, R M., Montaño‐Leyva, B., Ramos-Guerrero, A., Aguirre‐Güitrón, L., Moreno-Hernández, C., Coronado-Partida, L., Herrera-González, J A., Rodríguez-Guzmán, C A., Ángel-Cruz, J A D., Rayón-Díaz, E., Cortés-Rivera, H J., Santoyo-González, M A., & Gutiérrez-Martínez, P. (2019). Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. IntechOpen. https://doi.org/10.5772/intechopen.85682).https://doi.org/10.1002/9781119014362.ch5https://doi.org/10.2202/1556-3758.2126
Gutiérrez-Aguirre, B., Llave-Davila, R. E., Olivera-Montenegro, L., Herrera-Nuñez, E., & Marzano-Barreda, L. A. (2023). Effect of potassium permanganate as an ethylene scavenger and physicochemical characterization during the shelf life of fresh banana (Musa paradisiaca). Hindawi Publishing Corporation, 1-7. https://doi.org/10.1155/2023/4650023
Hu, W., Su, Y., Zhou, J., Zhu, H., Guo, J., Huo, H., & Gong, H. (2022). Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Scientia Horticulturae, 294, 110776. https://doi.org/10.1016/j.scienta.2021.110776
Iakimova, E. T., Ty, A. J., Hertog, M. L. A. T. M., Nicolai, B. M., & Woltering, E. J. (2004). Programmed cell death and postharvest deterioration of fresh horticultural products. Postharvest Biology and Technology. 214:113010.: https://doi.org/10.1016/j.postharvbio.2024.113010
Islam, M. K., Khan, M. Z. H., Sarkar, M. A. R., Yeasmin, S., Ali, M. K., & Uddin, M. H. (2013). Postharvest quality of mango (Mangifera indica L.) fruit affected by different levels of gibberellic acid during storage. Malays. Malaysian Journal of Analytical Sciences, 17 (3), 499–509. https://inis.iaea.org/search/45100631
Jayant, D., & Halami, P. M. (2020). Industrial Perspective of Food Preservatives from Microbial Origin, Elsevier B.V., https://doi.org/10.1016/B978-0-444-64309-4.00011-8
Juárez-López, P., Medina-Torres, R., Cruz-Crespo, E., Reed, D., Kent, M W., Cisneros‐Zevallos, L., King, S R., & Ramírez-Vallejo, P. (2014). Effect of electrical conductivity of the nutrient solution on fruit quality of three native tomato genotypes (lycopersicon esculentum var. Cerasiforme). Acta Horticulturae, 505-508. https://doi.org/10.17660/ActaHortic.2014.1034.63
Kim, B S., Lee, J Y., & Hwang, B K. (2000). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science, 56(12):1029-1035. https://onlinelibrary.wiley.com/doi/10.1002/1526-4998(200012)56:12%3C1029::AID-PS238%3E3.0.CO;2-Q
Kumari, S., Tayal, P., Sharma, E., & Kapoor, R. (2014). Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiological Research. 169(11), 862-872. https://doi.org/10.1016/j.micres.2014.02.012
Lebeda, A., McGrath, M. T., & Sedláková, B. (2010). Fungicide resistance in cucurbit powdery mildew fungi. Fungicides, 11(2), 221-246. DOI: 10.5772/14080
Li, Z., Dos Santos, R. F., Gao, L., Chang, P., & Wang, X. (2021). Current status and future prospects of grapevine anthracnose caused by Elsinoe ampelina: An important disease in humid grape‐growing regions. Molecular Plant Pathology. 22(8), 899-910. https://doi.org/10.1111/mpp.13076
Long, N N V., & Dantigny, P. (2016). Fungal contamination in packaged foods. Elsevier BV, 45-63. https://doi.org/10.1016/b978-0-12-800723-5.00004-8
Mandal, D., Pautu, L., Hazarika, T. K., Nautiyal, B. P., & Shukla, A. C. (2016). Effect of salicylic acid on physico-chemical attributes and shelf life of tomato fruits at refrigerated storage. International Journal of Bio-resource and Stress Management, 7(6), 1272-1278. https://doi.org/10.23910/IJBSM/2016.7.6.1683b
Mandal, M., Suren, H., Ward, B., Boroujerdi, A., & Kousik, C. (2018). Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. Journal of Pineal Research. 65, e12505. https://doi.org/10.1111/jpi.12505
Okanume, O. E., Joseph, O. M., Agaba, O. A., Habila, S., Oso, O. A., & Adebayo, O. B. (2017). Effect of industrial effluent on the growth, yield and foliar epidermal features of tomato (Solanum lycopersicum L.) in Jos, Plateau State, Nigeria. University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 9(4), 549-556. https://doi.org/10.15835/nsb9410106
Palenchar, J., Treadwell, D. D., Datnoff, L. E., & Gevens, A. J. (2009). Cucumber anthracnose in Florida: PP266/PP266, 5/2009. EDIS, (4). https://doi.org/10.32473/edis-pp266-2009
Palumbo, M., Attolico, G., Capozzi, V., Cozzolino, R., Corvino, A., Lucia, M. V. C., Pace, B., Pelosi, S., Ricci, I., Romaniello, R., & Cefola, M. (2022). Emerging postharvest technologies to enhance the shelf-life of fruit and vegetables: An Overview. Foods. 11(23). https://doi.org/10.3390/foods11233925
Pereira, G. V. D. S., Pereira, G. V. D. S., Oliveira, L. C. D., Cardoso, D., Calado, V., & Lourenço, L. D. F. H. (2021). Rheological characterization and influence of different biodegradable and edible coatings on postharvest quality of guava. Wiley-Blackwell, 45(4). https://doi.org/10.1111/jfpp.15335
Punja, Z. K., Ni, L., Lung, S., & Buirs, L. (2023). Total yeast and mold levels in high THC-containing cannabis (Cannabis sativa L.) inflorescences are influenced by genotype, environment, and pre-and post-harvest handling practices. Frontier Microbiology. 14: 1192035. https://doi.org/10.3389/fmicb.2023.1192035
Saseetharan N. H. M., & Zakaria, L. (2014). Occurrence of Fusarium spp. on vegetable crops and assessment of their pathogenicity. Pertanika Journal of Tropical Agricultural Science. 37:445-455. https://api.semanticscholar.org/CorpusID:85894645
Souza, A D., & Goes, A D. (2017). Mango pathology and diseases, 91-104. https://doi.org/10.1002/9781119014362.ch5https://doi.org/10.1002/9781119014362.ch5
Staats, M., Van Baarlen, P., Schouten, A., & Van Kan, J. A. (2007). Functional analysis of NLP genes from Botrytis elliptica. Molecular Plant Pathology. 8(2), 209-214. https://doi.org/10.1111/j.1364-3703.2007.00382.x
Thakur, P., Saini, N. K., Thakur, V. K., Gupta, V. K., Saini, R. V., & Saini, A. K. (2021). Rhamnolipid the glycolipid biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microbial Cell Factories. 4;20(1):1. https://doi.org/10.1186/s12934-020-01497-9
Tijjani A, Bashir K. A, Mohammed I, Muhammad A, Gambo A, & Musa H. (2017). Biopesticides for pest control: a review. Journal of Biopesticides. 3(1):6–13. https://www.researchgate.net/publication/321075197
Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology. 32:235–45. https://doi.org/10.1016/j.postharvbio.2003.11.005
Troncoso-Rojas, R., Tiznado-Hernández, M. E., González-León, A., R., Troncoso-Rojas, M. E., Tiznado-Hernández, A., & González-León. (2007). Recent advances in alternative postharvest technologies to control fungal diseases in fruits and vegetables, (179 pp.), Transworld Research Network. https://www.cabidigitallibrary.org/doi/full/10.5555/20073244864
Valero, D., Díaz-Mula, H. M., Zapata, P. J., Guillén, F., Martínez-Romero, D., Castillo, S., & Serrano, M. (2013). Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology. 77, 1-6. https://doi.org/10.1016/j.postharvbio.2012.10.011
Vatsa, P., Sanchez, L., Clément, C., Baillieul, F., & Dorey, S. (2010). Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Multidisciplinary Digital Publishing Institute, 11(12), 5095-5108. https://doi.org/10.3390/ijms11125095
Vos, C M F., Yang, Y., Coninck, B D., & Cammue, B P. (2014). Fungal (-like) biocontrol organisms in tomato disease control. Elsevier BV, 74, 65-81. https://doi.org/10.1016/j.biocontrol.2014.04.004
Yadav D, Gaurav H, Yadav R, Waris R, Afzal K, Chandra Shukla A. (2023). A comprehensive review on soft rot disease management in ginger (Zingiber officinale) for enhancing its pharmaceutical and industrial values. Heliyon. 14;9(7): e18337.: https://doi.org/10.1016/j.heliyon.2023.e18337
Yahia, E. M., Fonseca, J. M., & Kitinoja, L. (2019). Postharvest losses and waste, in: E.M. Yahia (Ed.), Postharvest Technology of Perishable Horticultural Commodities, Woodhead Publishing, Sawston, UK, pp. 43–69. https://doi.org/10.1016/B978-0-12-813276-0.00002-X
Yan, F., Xu, S., Guo, J., Chen, Q., Meng, Q., & Zheng, X. (2015). Biocontrol of post-harvest Alternaria alternata decay of cherry tomatoes with rhamnolipids and possible mechanisms of action. Journal of the Science of Food and Agriculture. 95(7):1469-74. doi: 10.1002/jsfa.6845. https://doi.org/10.1002/jsfa.6845
Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F. M., de Vicente, A., & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions. 24(12), 1540-1552. https://doi.org/10.1094/MPMI-06-11-0162
Zhang, Z., He, C., Chen, Y., Li, B., & Tian, S. (2021). DNA methyltransferases regulate pathogenicity of Botrytis cinerea to horticultural crops. Multidisciplinary Digital Publishing Institute, 7(8), 659-659. https://doi.org/10.3390/jof7080659
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 arsvot
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.