Evaluation on selected Malaysian native eggplant varieties (terung telunjuk and terung rapuh) fungal disease and their control
DOI:
https://doi.org/10.53797/agrotech.v4i2.5.2025Keywords:
Solanum melongena, terung telunjuk, terung rapuh, Phomopsis vexans, leaf blight, fruit rotAbstract
Native eggplant varieties such as terung telunjuk and terung rapuh are gaining renewed interest among Malaysian farmers due to their unique traits and potential for low-input farming. However, these varieties are susceptible to fungal diseases, particularly leaf blight and fruit rot caused by Phomopsis vexans. This study investigated the incidence and severity of fungal diseases in the field and evaluated various disease control strategies using chemical fungicides, biocontrol agents, and botanical treatments. Field surveys identified P. vexans as the primary pathogen, confirmed through morphological and molecular analyses. In vitro assays revealed that biofungicides containing Trichoderma spp. and Bacillus spp. demonstrated superior antifungal activity (97.64% and 93.89% inhibition, respectively), outperforming most chemical and botanical treatments. Moringa extract, neem oil, and garlic oil also exhibited notable inhibition of fungal growth, while azoxystrobin-based fungicides showed moderate efficacy. Field trials further confirmed the efficacy of integrated treatments, especially combinations of biofungicides with azoxystrobin or copper hydroxide, which significantly reduced disease severity and improved yield. The results suggest that integrated disease management strategies incorporating microbial biocontrol agents and selective chemical fungicides offer effective and sustainable control of P. vexans in traditional eggplant varieties.
Downloads
References
Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. doi: org/10.2478/v10102-009-0001-7
Alam, M.A., Kamarzaman, A.B., Jalloh, M.B., & Lassim, M.B.M. (2021). Evaluation of varietal performance for yield and yield contributing attributes of local brinjal (Solanum melongena L.) germplasm collections. Journal of Agriculture and Biodiversity, 12(1), 1–9. doi: 10.37231/JAB.2021.12.1.226
Balai, L. P., Kumar, S., & (2022). Integrated disease management of leaf spot of brinjal caused by Alternaria alternata: A review. Environment and Ecology, 40(2A), 440–450.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58(7), 649–662. doi: org/10.1002/ps.520
Bhanushree, N., Partha, S., Tomar, B.S. & Munshi, A.D. (2021). Phomopsis blight in eggplant and strategies to manage through resistance breeding. The Journal of Horticultural Science and Biotechnology, 97(1), 34–45. doi: 10.1080/14620316.2021.1966321
Bhat, M., Anwar, A., Mughal, M.N., Mohiddin, F., Makhdoomi, M.I., Bhat, A., & Fayaz, U. (2019). Morpho-cultural and pathological variability in Phomopsis vexans causing leaf blight and fruit rot of brinjal in Kashmir. Indian Phytopathology, 72, 225–233. doi: 10.1007/s42360-019-00128-7
Bhuvaneswari, P., Keerthi, A., Ramesh, E., Jyothi, M., & Kiran, S.B. (2023). Evaluation of different varieties of brinjal (Solanum melongena L.) for growth and yield parameters. Journal of Advanced Zoology, 44(S7). doi: 10.17762/jaz.v44is7.2760
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3–41. doi: 10.1007/s11104-014-2131-8
Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60(1), 2–14. doi: org/10.1111/j.1365-3059.2010.02411.x
Chowdhury, S.P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus. Frontiers in Microbiology, 6, 780. doi: 10.3389/fmicb.2015.00780
Curtis, H., Noll, U., Störmann, J., & Slusarenko, A.J. (2004). Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiological and Molecular Plant Pathology, 65(2), 79–89. doi: 0.1016/j.pmpp.2004.11.006
Dhariwal, S., Sangwan, P., Raj, K., & Kumar, A. (2021). A review on epidemiology and various management methods of brinjal fruit rot disease. Agricultural Mechanization in Asia, Africa and Latin America, 52(1), 2851–2858.
Dubey, N. K., Shukla, R., Kumar, A., Singh, P., & Prakash, B. (2011). Prospects of botanical pesticides in sustainable agriculture. Current Science, 101(4), 477–486.
Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. doi: 10.1146/annurev.phyto.43.032904.092924
Gürbüz, N., Uluişik, S., Frary, A., Frary, A., & Doğanlar, S. (2018). Health benefits and bioactive compounds of eggplant. Food Chemistry, 268, 602–610. doi: 10.1016/j.foodchem.2018.06.093
Ha, T. M. (2015). Developing an integrated pest management program for tomatoes in the Red River Delta of Vietnam: A mini review. Aceh International Journal of Science and Technology, 4(2), 41–53. doi: 10.13170/aijst.4.2.2488
Hanif, A., Zhang, F., Li, P., Li, C., Xu, Y., Zubair, M., Zhang, M., Jia, D., Zhao, X., Liang, J., & Gao, X. (2019). Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 11(5), 295. doi: 10.3390/toxins11050295
Hossain, M., Islam, M., Uddin, M., Arifuzzaman, S. M., & Hasan, G. (2013). Control of Phomopsis blight of eggplant through fertilizer and fungicide management. International Journal of Agricultural Research, Innovation and Technology, 3(1), 66–72. doi: 10.3329/ijarit.v3i1.16095
Ishii, H. (2006). Strobilurins: Fungicidal action and resistance management. Japan Agricultural Research Quarterly: JARQ, 40(3), 205–211. doi: 10.6090/jarq.40.205
Islam, M.M., Faruk, M.I., Rahman, M.S., Jahan, K.E. & Asaduzzaman, M. (2020a). Screening of eggplant germplasms against Phomopsis blight and fruit rot caused by Phomopsis vexans. International Journal of Research Studies in Biosciences, 8(7), 1–10. doi: 10.20431/2349-0365.0807005
Islam, M., Alam, K.M., Momtaz, R., Arifunnahar, M., & Karim, M. (2020b). Molecular characterization of Phomopsis blight and fruit rot resistant and susceptible cultivars of eggplant. International Journal of Research Studies in Biosciences, 8(7), 11–20. doi: 10.20431/2349-0365.0807004
Jafar, A., Bibi, N., Naqvi, R.A., Sadeghi‐Niaraki, A., & Jeong, D. (2024). Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 15, 1356260. doi: 10.3389/fpls.2024.1356260
Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change—the importance of long‐term data sets. New Phytologist, 177(1), 8–11. doi: org/10.1111/j.1469-8137.2007.02312.x
Kagale, S., Marimuthu, T., Thayumanavan, B., Nandakumar, R., & Samiyappan, R. (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae. Physiological and Molecular Plant Pathology, 65(2), 91–100. doi: org/10.1016/j.pmpp.2004.11.008
Kumar, A., Satpathy, S., Singh, T. K., Singh, R., Pandey, A. K., Singh, M., & Krishna. (2020). Integrated pest management of major vegetable crops: A review. Journal of Entomology and Zoology Studies, 8(5), 2271–2280.
Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., & Zhang, R. (2014). Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in Microbiology, 5, 636. doi: 10.3389/fmicb.2014.00636
Mahadevakumar, S., Amruthavalli, C., Sridhar, K., & Janardhana, G.R. (2017). Prevalence, incidence and molecular characterization of Phomopsis vexans (Diaporthe vexans) causing leaf blight and fruit rot disease of brinjal in Karnataka (India). Pathogens and Disease, 7(1), 29–46. doi: 10.5943/PPQ/7/1/4
Mahadevakumar, S., & Janardhana, G. R. (2016). Phomopsis vexans (Sacc. & Syd.) Harter: Current research and future perspectives (1914–2015). Research & Reviews: Journal of Botanical Sciences, 2016, 1–9.
Pani, B., Singh, D., & Nanda, S. (2013). Chemical control and economics of Phomopsis blight and fruit rot of brinjal in the Eastern Ghat Highland Zone of Odisha. International Journal of Agriculture, Environment and Biotechnology, 6(4), 581–584. doi: 10.5958/J.2230-732X.6.4.034
Pandey, A. (2010). Studies on fungal disease of eggplant in relation to statistical analysis and making of disease calendar. Recent Research in Science and Technology, 2(9), 1-3. doi: 10.1079/ejhs.2008/596544
Reddy, Y. N., Jakhar, S., & Dahiya, O. (2018). Eco-friendly measures for control of Phomopsis vexans and other mycoflora of brinjal. International Journal of Current Microbiology and Applied Sciences, 7, 3667–3673. doi: org/10.20546/IJCMAS.2018.705.423
Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2008). Performance of hybrids between local varieties of eggplant (Solanum melongena) and its relation to the mean of parents and to morphological and genetic distances among parents. European Journal of Horticultural Science, 73(2), 76–83.
Rohini, M., Jayapala, N., Pushpalatha, H., Gavirangappa, H., Puttaswamy, H., & Ramachandrappa, N.S. (2023). Biochemical, pathological and molecular characterisation of Phomopsis vexans: A causative of leaf blight and fruit rot in brinjal. Microbial Pathogenesis, 179, 106114. doi: 10.1016/j.micpath.2023.106114
Rohini, R., Gowtham, H., Hariprasad, P., Singh, S., & Niranjana, S. (2016). Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 101, 123–129. doi: org/10.1016/j.biocontrol.2016.05.007
Santos, J. M., Vrandečić, K., Ćosić, J., Duvnjak, T., & Phillips, A. J. L. (2017). Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia: Molecular Phylogeny and Evolution of Fungi, 38, 1–20. doi: 10.3767/003158517X693674
Sharma, M., Kaur, R., & Singh, B. (2021). Biochemical composition of eggplant fruits: A review. Applied Sciences, 11(15), 7078. doi: 10.3390/app11157078
Singh, R., Singh, P. C., Kumar, D., & Sachan, N. S. (2012). Management of Phomopsis leaf blight of brinjal through different fungicides and biopesticide. HortFlora Research Spectrum, 1(4), 371–374. doi: 10.5555/20133030992
Udayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., & Hyde, K. D. (2011). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56, 157–171. doi: 10.1007/s13225-012-0190-9
Udayashankar, A.C., Nayaka, S.C., Archana, B., Lakshmeesha, T., Niranjana, S., Lund, O., & Prakash, H.S. (2019). Specific PCR‐based detection of Phomopsis vexans the cause of leaf blight and fruit rot pathogen of Solanum melongena L. Letters in Applied Microbiology, 69(2), 131–138. doi: 10.1111/lam.13214
Umikalsum, M.B., Razean Haireen, M.R., Siti Noor Aishikin, A.H., Mohd Zulkhairi, A., Erny Sabrina, M.N., Aminah, M., Nurul Ammar Illani, J., & Umi Kalsum, H.Z. (2025). Exploring the potential of traditional eggplant varieties in Malaysia for sustainable agriculture. Asian Journal of Advanced Research and Reports, 19(3), 247–255. doi: 10.9734/ajarr/2025/v19i3937
Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159(4051), 850. doi: 10.1038/159850b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurul Ammar Illani Jaafar, Aminah Mahmud, Razean Haireen Mohd. Razali, Nurul Afiqah Shamsolanwar, Umikalsom Mohamed Bahari, Faziah Umar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
