Screening Traditional Eggplant for Potential Resistance Rootstock in Management of Bacterial Wilt Disease on Tomato
DOI:
https://doi.org/10.53797/agrotech.v4i1.1.2025Keywords:
Bacterial wilt, Ralstonia solanacearum, terung rapuh, terung telunjuk, disease resistantAbstract
Tomato plants (Solanum lycopersicum L.) suffer major yield losses due to bacterial wilt, a highly destructive disease resulting from infection by the soil-borne bacterium Ralstonia solanacearum. One effective strategy to manage this pathogen is grafting susceptible tomato varieties onto resistant rootstocks. In this study, nine traditional eggplant (Solanum melongena) accessions from MARDI MyGenebank were screened under glasshouse conditions for resistance to R. solanacearum using artificial inoculation via soil drenching. Disease symptoms were monitored for 21 days post-inoculation to assess disease severity and wilting percentage. Results revealed that terung pipit, terung rapuh 77, and terung rapuh 22 exhibited strong resistance, with wilting percentages ranging from 0.0% to 10.0% and disease index values below 1. Terung assam and terung telunjuk exhibited moderate resistance, with 33–50% wilting and disease index values ranging from 2 to 3. The remaining accessions were highly susceptible, exhibiting 55–100% wilting and disease indices of 3–4. These findings are consistent with international studies on traditional and wild Solanaceae species, highlighting the genetic diversity and resistance potential within local germplasm. The identification of resistant accessions provides promising candidates for rootstock development in grafting systems to control bacterial wilt in tomato. Future work should focus on field validation and molecular characterisation to support the integration of these accessions into sustainable tomato production systems.
Downloads
References
Arwiyanto, T., Lwin, K., Maryudani, Y., & Purwantoro, A. (2015). Evaluation of local Solanum torvum as a rootstock to control Ralstonia solanacearum in Indonesia. Acta Horticulturae, 1086, 101–106. https://doi.org/10.17660/actahortic.2015.1086.11
Aslam, M. N., Mukhtar, T., Hussain, M. A., & Raheel, M. (2017). Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. Journal of Plant Diseases and Protection, 124(6), 585–590. https://doi.org/10.1007/s41348-017-0100-1
Barik, S., Reddy, A. C., Ponnam, N., Kumari, M., C, A. G., Reddy, D. C. L., Petikam, S., & Gs, S. (2020). Breeding for bacterial wilt resistance in eggplant (Solanum melongena L.): Progress and prospects. Crop Protection, 137, 105270. https://doi.org/10.1016/j.cropro.2020.105270
Daunay, M. C., Lester, R. N., Laterrot, H., & Hajjar, R. (2010). The use of wild species for the genetic improvement of brinjal eggplant (Solanum melongena) and tomato (Solanum lycopersicum). In E. Guarino, V. Ramanatha Rao, & R. Reid (Eds.), Collecting Plant Genetic Diversity: Technical Guidelines (pp. 145–161). CABI Publishing.
Fock, I., Collonnier, C., Purwito, A., Luisetti, J., Souvannavong, V., Vedel, F., Servaes, A., Ambroise, A., Kodja, H., Ducreux, G., & Sihachakr, D. (2000). Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Science, 160(1), 165–176. https://doi.org/10.1016/s0168-9452(00)00375-7
Islam, N. G. M. N. (2012). Good agricultural practices (GAP) of tomatoes in Malaysia: Evidences from Cameron Highlands. African Journal of Business Management, 6(27). https://doi.org/10.5897/ajbm10.1304
Kim, S. G., Hur, O. S., Ro, N. Y., Ko, H. C., Rhee, J. H., Sung, J. S., Ryu, K. Y., Lee, S. Y., & Baek, H. J. (2016). Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. Plant Pathology Journal, 32(1), 58–64. https://doi.org/10.5423/ppj.nt.06.2015.0121
Lee, M. H., Kim, J. K., Lee, H. K., Kim, K. J., Yu, S. H., Kim, Y. S., & Lee, Y. S. (2013). Reduction of bacterial wilt diseases with eggplant rootstock EG203-grafted tomatoes in the field trials. Research in Plant Disease, 19(2), 108–113. https://doi.org/10.5423/rpd.2013.19.2.108
Manickam, R., Chen, J. R., Sotelo-Cardona, P., Kenyon, L., & Srinivasan, R. (2021). Evaluation of different bacterial wilt resistant eggplant rootstocks for grafting tomato. Plants, 10(1), 75. https://doi.org/10.3390/plants10010075
Mat Sulaiman, N. N., Rafii, M. Y., Duangjit, J., Ramlee, S. I., Phumichai, C., Oladosu, Y., Datta, D. R., & Musa, I. (2020). Genetic variability of eggplant germplasm evaluated under open field and glasshouse cropping conditions. Agronomy, 10(3), 436. https://doi.org/10.3390/agronomy10030436
McAvoy, T., Freeman, J. H., Rideout, S. L., Olson, S. M., & Paret, M. L. (2012). Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience, 47(5), 621–625. https://doi.org/10.21273/hortsci.47.5.621
Mochizuki, H., Nakaho, K., & Arie, T. (2005). Control of bacterial wilt of eggplant using grafting on resistant rootstock and resistant lines. Journal of General Plant Pathology, 71(3), 230–235. https://doi.org/10.1007/s10327-005-0190-1
Mohd Zulkhairi, A., Umikalsum, M. B., Razali, M., Nur Syafini, G., Aimi Athirah, A., Rosliza, J., Rozlaily, Z., Siti Aisyah, M. N., Nur Daliana, Y., Rosali, H., & Noralienatul Azlia, A. A. (2020). Traditional eggplant as future crop for food security and improving livelihood. Transactions of the Malaysian Society of Plant Physiology, 27, 141–145.
Namisy, Chen, Prohens, Metwally, Elmahrouk, & Rakha. (2019). Screening cultivated eggplant and wild relatives for resistance to bacterial wilt (Ralstonia solanacearum). Agriculture, 9(7), 157. https://doi.org/10.3390/agriculture9070157
Nion, Y. A., & Toyota, K. (2008). Suppression of bacterial wilt and Fusarium wilt by a Burkholderia nodosa strain isolated from Malaysian soil. Microbes and Environments, 23(2), 134–141. https://doi.org/10.1264/jsme2.23.134
Oladosu, Y., Rafii, M. Y., Arolu, F., Chukwu, S. C., Salisu, M. A., Olaniyan, B. A., Fagbohun, I. K., & Muftaudeen, T. K. (2021). Genetic diversity and utilization of cultivated eggplant germplasm in varietal improvement. Plants, 10(8), 1714. https://doi.org/10.3390/plants10081714
Pradhanang, P. M., Elphinstone, J. G., & Fox, R. T. V. (2000). Identification of sources of resistance to bacterial wilt of tomato in Nepal. Plant Pathology, 49(4), 453–460. https://doi.org/10.1046/j.1365-3059.2000.00473.x
Prior, P., Allen, C., & Elphinstone, J. (2013). Bacterial wilt disease. Springer Science & Business Media. http://books.google.ie/books?id=run7CAAAQBAJ&printsec=frontcover&dq=bacterial+wilt+of+tomato
Raja, B. A. K. P., & Rabindro, A. P. P. (2017). Evaluation of wilt resistance of wild Solanum species through grafting in brinjal. International Journal of Current Microbiology and Applied Sciences, 6(9), 3464–3469. https://doi.org/10.20546/ijcmas.2017.609.425
Romano, D., & Paratore, A. (2001). Effects of grafting on tomato and eggplant. Acta Horticulturae, 559, 149–154. https://doi.org/10.17660/actahortic.2001.559.21
Singh, P., & Gopalakrishnan, T. (1997). Grafting for wilt resistance and productivity in brinjal (Solanum melongena L.). Horticultural Journal, 10(2), 57–64.
Yadessa, G., Van Bruggen, A., & Ocho, F. (2010). Effects of different soil amendments on bacterial wilt caused by Ralstonia solanacearum and on the yield of tomato. Journal of Plant Pathology, 92(2), 439–450. https://doi.org/10.4454/jpp.v92i2.188
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 arsvot

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.