Growth and Malondialdehyde Content of Salt-tolerant Grafted Rockmelon as Affected by Salinity Sources
DOI:
https://doi.org/10.53797/agrotech.v2i1.4.2023Keywords:
Grafted rockmelon, Salinity sources, potassium nitrate (KNO3), NaCl, High strength nutrient solutionAbstract
Supplementation of additional salt is one of the feasible approaches to increase fruit quality in rockmelon. However, continuous supply through fertigation could lead to salinity development and deleteriously affects rockmelon growth. In order to mitigate the salinity stress incidence at vegetative stage, the use of salt-tolerant grafted rockmelon enable to utilize the beneficial impact of salinity sources for growth optimization. Thus, an experiment was conducted to evaluate the growth performance and malondialdehyde (MDA) content of salt-tolerant grafted rockmelon under varying salinity sources; and further to select the most suitable salinity sources that can be used at vegetative stage. All grafted plants were arranged in Randomized Complete Block Design (RCBD) with 4 replications. Grafted rockmelon was then subjected to four types of salinity sources; basic nutrient solution (BNS) (EC=2.5 dS m-1) as control, NaCl (50 mM)+BNS (EC=7.1 dS m-1), KNO3+BNS (EC=8.4 dS m-1), and high strength nutrient solution (NS) (EC=7.1 dS m-1) for 28 days. Data on the plant growth and samples for MDA content in leaves were collected at 30 days after transplanting (DAT). Salinity induced using KNO3+BNS sustained the growth variables (stem diameter and total leaf area) and MDAcontent. Application of NaCl+BNS reduce significantly stem diameter accompanied with the highest MDA concentration in the leaves as compared to BNS. Salinity induced by KNO3+BNS showed comparable results with BNS in overall growth measurements and MDA concentrations. In conclusion, incorporation of KNO3+BNS is the most suitable salinity source to be used to sustain growth in salt-tolerant grafted rockmelon at vegetative stage.
Downloads
References
Ab Rauf, M.N.H., & Shahruddin, S. (2022). The Effect of Different Growing Media on Physical Morphology of Rockmelon (Cucumis Melo Linn cv. Glamour) Seedling. AgroTech- Food Science, Technology and Environment, 1(1), 17-24.
Ahmad, J., Bashir, H., Bagheri, R., Baig, A., Al-Huqail, A., Ibrahim, M.M., & Qureshi, M.I. (2017). Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PloS one, 12(9), 115-128. https://doi.org/10.1371/journal.pone.0185118
APCO Worlwide. (2017). Export Strategy and Plan for Australian Melons. Retrieved from https://www.melonsaustralia.org.au/wp
Azarmi, R., Taleshmikail, R.D., & Gikloo, A. (2010). Effects of salinity on morphological and physiological
changes and yield of tomato in hydroponics system. Journal of Food, Agriculture and Environment, 8(2): 573-
Cavins, T., Whipker, B., Fonteno, W., Harden, B., & Gibson, J. (2000). Monitoring and managing pH and EC using
the PourThru extraction method. Horticulture Information Leaflet, 590, 1–17.
Chen, B., Liu, E., Tian, Q., Yan, C., & Zhang, Y. (2014). Soil nitrogen dynamics and crop residues. A review. Agronomy
for Sustainable Development, 34(2), 429-442. https://doi.org/10.1007/s13593-014-0207-8
Chinnusamy, V., Jagendorf, A., & Zhu, J.K. (2005). Understanding and improving salt tolerance in plants. Crop science, 45(2), 437-448. https://doi.org/10.2135/cropsci2005.0437
Colla, G., Rouphael, Y., Cardarelli, M., & Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange and mineral composition of grafted watermelon plants. HortScience, 41(3), 622-627.
https://doi.org/10.21273/HORTSCI.41.3.622
Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z., (2010). Role of grafting in vegetable crops grown under saline
conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
Costa, L.D.F., Casartelli, M.R.D.O., & Wallner-Kersanach, M. (2013). Labile copper and zinc fractions under
different salinity conditions in a shipyard area in the patos lagoon estuary, south of Brazil. Quimica Nova, 36,
-1095. https://doi.org/10.1590/S0100-40422013000800002
Dias, N., Morais, P.L., Abrantes, J.D., Nogueira de Sousa Neto, O., Palacio, V.S., and Freitas, J.J.R. (2018).
Nutrient solution salinity effect of greenhouse melon (Cucumis melon L. cv. Nectar). Acta Agronomica, 67(4),
-524. https:/ https://doi.org/10.15446/acag.v67n4.60023
Ebrahimzadeh, A., Ghorbanzadeh, S., Vojodi Mehrabani, L., Sabella, E., De Bellis, L., & Hassanpouraghdam, M.B. (2022). KNO3, Nano-Zn, and Fe Foliar Application Influence the Growth and Physiological Responses of Aloe vera under Salinity. Agronomy, 12(10), 2360. https://doi.org/10.3390/agronomy12102360
Gabrijel, O., Davor, R., Zed, R., Marija, R., & Monika, Z. (2009). Cadmium accumulation by muskmelon under salt
stress in contaminated organic soil. Science of the Total Environment, 407(7), 2175-2182.
https://doi.org/10.1016/j.scitotenv.2008.12.032
Hasegawa, P.M., Bressan, R.A., Zhu, J.K., & Bohnert, H.J. (2000). Plant Cellular and Molecular Responses to High Salinity. Annual Review of Plant Biology, 51(1), 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
Hepler, P.K., Vidali, L., & Cheung, A.Y. (2001). Polarized cell growth in higher plants. Annual review of cell and developmental biology, 17(1), 159-187. https://doi.org/10.1146/annurev.cellbio.17.1.159
Huang, Y., Tang, R., Cao, Q., & Bie, Z. (2009). Improving the fruit yield and quality of cucumber by grafting
onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122(1), 26-31.
https://doi.org/10.1016/j.scienta.2009.04.004
Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
Lee, J.M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61-
http://dx.doi.org/10.1002/9780470650851.ch2
Liu, T., Dai, W., Sun, F., Yang, X., Xiong, A., & Hou, X. (2014). Cloning and characterization of the nitrate transporter
gene BraNRT2 in non-heading Chinese cabbage. Acta Physiologiae Plantarum, 36(4), 815-823.
https://doi.org/10.1007/s11738-013-1460-1
Jabeen, N., & Ahmad, R. (2011). Foliar application of potassium nitrate affects the growth and nitrate reductase activity in sunflower and safflower leaves under salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 172-178. https://doi.org/10.15835/nbha3926064
Jawandha, S.K., Gill, P.P.S., Harminder, S., & Thakur, A. (2017). Effect of potassium nitrate on fruit yield,
quality and leaf nutrients content of plum. Vegetos, 30(2), 325-328.
Kaya, C., Tuna, A.L., Ashraf, M., & Altunlu, H. (2007). Improved salt tolerance of melon (Cucumis melo L.) by the
addition of proline and potassium nitrate. Environmental and Experimental Botany, 60(3), 397-403.
https://doi.org/10.1016/j.envexpbot.2006.12.008
Monteiro, R.O.C., Coelho, R.D., & Monteiro, P.F.C. (2014). Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils. Ciência rural, 44, 25-30. http://dx.doi.org/10.1590/S0103-84782013005000151
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250.
https://doi.org/10.1046/j.0016-8025.2001.00808.x
Munns, R., Schachtman, D.P., & Condon, A.G. (1995). The significance of a two-phase growth response to salinity in wheat and barley. Functional Plant Biology, 22(4), 561-569. https://doi.org/10.1071/PP9950561
Norrizah, J.S., Hashim, S.N., Fasiha, F.S., & Yaseer, S.M. (2012). β-carotene and antioxidant analysis of three different rockmelon (Cucumis melo L.) cultivars. Journal of Applied Sciences, 12(17), 1846-1852. https://dx.doi.org/10.3923/jas.2012.1846.1852
Oosterhuis, D.M., Loka, D.A., Kawakami, E.M., & Pettigrew, W.T. (2014). The physiology of potassium in crop production. Advances in Agronomy, 126, 203-233. https://doi.org/10.1016/B978-0-12-800132-5.00003-1
Padder, B.M., Agarwal, R.M., Kaloo, Z.A., & Singh, S. (2012). Nitrate reductase activity decreases due to
salinity in mungbean (Vigna radiate L.). International Journal of Current Research and Review, 4, 117-123. https://doi.org/10.1016/j.sjbs.2015.03.004
Pessarakli, M. (2016). Handbook of Cucurbits, Growth, Cultural Practices, and Physiology. Florida: CRC Press,
Taylor and Francis Publishing Group, 574pp.
Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic
activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid
rootstocks. Photosynthetica, 50(2), 180-188. http://dx.doi.org/10.1007/s11099-012-0002-1
Shafieizargar, A., Awang, Y., Ajamgard, F., Juraimi, A.S., Othman, R., & Ahmadi, A.K. (2015). Assessing five citrus
rootstocks for NaCl salinity tolerance using mineral concentrations, proline and relative water contents as
indicators. Asian Journal of Plant Sciences, 14(1), 20-26. http://dx.doi.org/10.3923/ajps.2015.20.26
Shahid M., Salim J., Mohd Noor M.R., Ab Hamid A.H., Abd Manas M., & Ahmad S.A. (2009). Manual Teknologi
Fertigasi Penanaman Cili, Rockmelon dan Tomato. (42-56). Publisher MARDI.
Sevengor, S., Yasar, F., Kusvuran, S., & Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21), 4920-4924. http://www.academicjournals.org/AJAR
Sivasankar, S., & Oaks, A. (1996). Nitrate assimilation in higher plants: the effects of metabolites and light. Plant Physiology and Biochemistry (France). 34, 609–620.
Ulas, F., Aydın, A., Ulas, A., & Yetisir, H. (2019). Grafting for sustainable growth performance of melon (Cucumis
melo L.) under salt stressed hydroponic condition. European Journal of Sustainable Development, 8(1), 201-205.
http://dx.doi.org/10.14207/ejsd.2019.v8n1p201
Umar, S. (2006). Alleviating adverse effects of water stress on yield of sorghum, mustard and groundnut by potassium
application. Pakistan Journal of Botany. 38, 1373–1380. https://www.researchgate.net/publication/228743743
Usherwood, N.R. (1985). The role of potassium in crop quality. Potassium in Agriculture, 489-513pp.
Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2
White, P.J., & Karley, A.J. (2010). Potassium. Cell biology of metals and nutrients, 199-224.
Yang, L.H., Huang, H., & Wang, J.J. (2010). Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. Journal of Insect Physiology, 56(12), 1871-1876. https://doi.org/10.1016/j.jinsphys.2010.08.006
Yetisir, H., & Uygur, V. (2010). Responses of grafted watermelon onto different gourd species to salinity
stress. Journal of Plant Nutrition, 33(3), 315-327. http://dx.doi.org/10.1080/01904160903470372
Zhang, P., Senge, M., & Dai, Y. (2016). Effects of salinity stress on growth, yield, fruit quality and water use
efficiency of tomato under hydroponics system. Reviews in Agricultural Science, 4, 46-55.
http://dx.doi.org/10.7831/ras.4.46
Zhu, J., Bie, Z. & Li, Y. (2008). Physiological and growth responses of two different salt-sensitive cucumber cultivars
to NaCl stress, Soil Science and Plant Nutrition, 54(3), 400-407. https://doi.org/10.1111/j.1747-0765.2008.00245.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 arsvot
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.