Kumaraswamy Burr Type X Distribution and Its Properties
DOI:
https://doi.org/10.53797/aseana.v2i2.2.2022Keywords:
Bayesian Analysis, Burr-Type X, Kumaraswamy Burr-Type X, moments, maximum likelihood estimation, simulation studyAbstract
In this work, we introduce a new model Kumaraswamy Burr-Type X (Kum-BX) from the so-called Kumaraswamy-G family of distributions. Kum-BX serves as an alternative to the Kumaraswamy-Weibull model, which is very flexible distribution that has increasing, decreasing, and bathtub shapes in the hazard function. Several properties of this new model were provided. The generalization of densities of this further four-parameter distribution, the expression for the rth moment, m.g.f, Renyi entropy, and the order statistics was established. A simulation study at different sample sizes with parameter values was done to validate and compare the mean errors increasing the sample size decreases the error. We also considered the MLE and Bayes methods to estimate the parameters of the new model and its flexibility with an application to real data set was applied to illustrate its usefulness for recommendation in agricultural, medical, and engineering areas respectively.
Downloads
References
A. Wahed, A general method of constructing extended families of distributions from an existing continuous class, Journal of Probability and Statistical Science 4 (2006) 165177.
P. Kumaraswamy, A generalized probability density function for double bounded random processes, Journal of Hydrology 46 (1) (1980) 7988.
M. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Statistical Methodology 6 (1) (2009) 7081.
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, Journal of statistical computation and simulation 81 (7) (2011) 883898.
M. Alizadeh, M. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, G. Hamedani, The Kumaraswamy marshal-Olkin family of distributions, Journal of the Egyptian Mathematical Society 23 (3) (2015) 546557.
G. M. Cordeiro, R. R. Pescim, E. M. Ortega, the Kumaraswamy generalized half-normal distribution for skewed positive data, Journal of Data Science 10 (2) (2012) 195224.
M. A. Correa, D. A. Nogueira, E. B. Ferreira, Kumaraswamy normal and 380 azzalini’s skew normal modeling asymmetry, Sigmae 1 (1) (2012) 6583.
J. M. Carrasco, S. L. Ferrari, G. M. Cordeiro, A new generalized Kumaraswamy distribution, arXiv preprint arXiv:1004.0911.
A. E. Gomes, C. Q. da Silva, G. M. Cordeiro, E. M. Ortega, A new lifetime model: the Kumaraswamy generalized Rayleigh distribution, Journal of Statistical Computation and Simulation 84 (2) (2014) 290309.
S. Nadarajah, S. Eljabri, The Kumaraswamy Gp distribution, Journal of Data Science 11 (4) (2013) 739766.28
S. Nadarajah, G. M. Cordeiro, E. M. Ortega, General results for the Kumaraswamy-G distribution, Journal of Statistical Computation and Simulation 82 (7) (2012) 951979.
M. Tahir, G. M. Cordeiro, M. Mansoor, The Kumaraswamy Pareto iv distribution, Austrian Journal of Statistics.
I. W. Burr, Cumulative frequency functions, The Annals of Mathematical Statistics 13 (2) (1942) 215232.370.
M. Z. Raqab, D. Kundu, Burr Type X distribution: revisited, Journal of Probability and Statistical Sciences 4 (2) (2006) 179193.
J. Surles, W. Padgett, Some properties of a scaled burr Type X distribution, Journal of Statistical Planning and Inference 128 (1) (2005) 271280.
M. A. Khaleel, N. A. Ibrahim, M. Shitan, F. Merovci, Some properties of 400 Gamma Burr Type X distribution with application.
F. Merovci, M. A. Khaleel, N. A. Ibrahim, M. Shitan, The Beta Burr Type X distribution properties with application, SpringerPlus (2016) 118.
Cordeiro, G.M., Ortega, E.M. and Nadarajah, S., 2010. The Kumaraswamy
Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8), pp.1399-1429.
E. W. Weisstein, Power series. Incomplete beta function.
J. Kenney, E. Keeping, Moving averages, Kenney JF. Mathematics of statistics. Princeton NJ: Van Nostrand.
J. Moors, A quantile alternative for kurtosis, The statistician (1988) 2532.
R. L. Smith, J. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Applied Statistics 400 (1987) 358369.
P. Heidelberger, P. D. Welch, Simulation run length control in the presence of an initial transient, Operations Research 31 (6) (1983) 11091144.
M. U. Yusuf, M. R. B. A. Bakar, A bayesian estimation on right censored survival data with mixture and non-mixture cured fraction model based on beta-Weibull distribution, in: AIP Conference Proceedings, Vol. 20079,1739.
J. Geweke, et al., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, Vol. 196, Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, USA, 1991.
M.-H. Chen, Q.-M. Shao, Monte carlo estimation of bayesian credible and hpd intervals, Journal of Computational and Graphical Statistics 8 (1) (1999) 6992.
Y. Fan, H. van den Dool, Climate prediction center global monthly soil moisture data set at 0.5 resolution for 1948 to present, Journal of Geophysical Research: Atmospheres109(D10).
A. W. Marshall, I. Olkin, A multivariate exponential distribution, Journal of the American Statistical Association 62 (317) (1967) 3044.
R. D. Gupta, D. Kundu, Generalized exponential distribution: different method of estimations, Journal of Statistical Computation and Simulation 420 69 (4) (2001) 315337.
S. Nadarajah, S. Kotz, The beta exponential distribution, Reliability engineering and system safety 91 (6) (2006) 689697.
F. Famoye, C. Lee, O. Olumolade, The beta-weibull distribution, Journal of Statistical Theory and Applications 4 (2) (2005) 121136.
J. H. Pollard, E. J. Valkovics, The gompertz distribution and its applications, Genus (1992) 1528.
A. El-Gohary, A. Alshamrani, A. N. Al-Otaibi, the generalized gompertz 440 distribution, Applied Mathematical Modelling 37 (1) (2013) 1324.
D. W. Hosmer, S. Lemeshow, S. May, Model development, Applied Survival Analysis: Regression Modeling of Time-to-Event Data, Second Edition (2008) 132168.
Pentland, C.H., ElMaghraby, R., Iglauer, S. and Blunt, M.J., 2011. Measurements of the capillary trapping of supercritical carbon dioxide in Berea sandstone. Geophysical Research Letters, 38(6).
Maurer, E.P., Wood, A.W., Adam, J.C., Lettenmaier, D.P. and Nijssen, B., 2002. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States*. Journal of climate, 15(22), pp.3237-3251.
Pescim, Rodrigo R and Cordeiro, Gauss M and Demetrio, Clarice GB and
Ortega, Edwin MM and Nadarajah. 2012. The New Class of Kummer Beta Generalized Distributions. Statistics and Operations Research Transactions (SORT). 36(2), pp.153-180.
Andrews, DF and Herzberg, AM. 1985. Stress-Rupture Life of Kevlar 49/epoxy Spherical Pressure Vessels. 23(3) pp.181-186
Shiffman, Saul and Waters, Andrew J and Hickcox, Mary, 2004. The Nicotine Dependence Syndrome Scale: A Multidimensional Measure of Nicotine Dependence.Nicotine and Tobacco Research 6(2) pp.327-348
Jones, MC and Faddy, MJ, 2003. A Skew Extension of the T-Distribution, With Applications. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 65(1) pp.159-174.
Tadikamalla, P.R. 1980. A look at the Burr and related distributions. International Statistical Review, Vol. 48, pp.337-344.
Zimmer, W.J. Keats, J.B, and Wang, F.K 1998. The Burr XII distribution in Reliability analysis. Journal of Quality and Technology, 30, no. 4, pp. 386-394.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Umar Yusuf Madaki, Mohd Rizam Abu Bakar, Mundher Abdallah Khaleel, Laba Handique
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.