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1. INTRODUCTION 

The general concept of this work was aim at developing a new model that encloses the way of its 

performance towards the betterment of many sub-models which are generally known for a lifetime 

dataset, which includes the so-called new four-parameter distribution that motivates us with a 

remarkable features and flexibility based on its properties. Although, for a new class of generalized 

family of distributions proposed by [1]. The first motivation to introduce this four-parameter model 

with some strong motivation which are physical and applicable to derive more generalized models 

and families using the following function of equation: 

 

 . (1) 

 

Where G1(t;W) and g2(x;W) ”are the cdf and pdf of the baseline distribution, G2(x;X) and g2(x;W) for 

the generator distribution X, which is the parameter vector of the generator distribution and W is the 

parameters vector of the baseline distribution [1]”. The model proposed by [2], is an old-time 

probability distribution two random processes with applications to hydrological data. The 

Kumaraswamy or” Kum” distribution received quite few attention for decades which fits 
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hydrological and climatological lifetime datasets [3]. The C.D.F and P.D.F of the Kum distribution, 

say Kum(ϕ,ψ), is given by: 

 

FKum(t;ϕ,ψ) = 1 − (1 − tϕ)ψ. (2) 

fKum(t;ϕ,ψ) = ϕψt(ϕ−1)(1 − tϕ)(ψ−1). (3) 

  

Where 1) We start with the Kum model on the interval (0,1), having P.D.F and C.D.F with two 

shape parameters ϕ,ψ > 0 defined by K distribution [3] which fails to accept the fact that beta does 

not strictly fit hydrological data such as daily rainfall etc. This model is unimodal, increasing, 

decreasing and constant based on the values of its parameters. It has shown that both the beta and 

Kumaraswamy distribution have same shape properties [2]. The K model it’s not as famous as beta 

model to statisticians over the years [3]. Also, he emphasizes some advantages of Kum model over 

the beta model, where he stated that: The normality assumption constant is easy. It has an easy 

formula for the model. A quantile probability functions does not consist any special functions. A 

simplicity formula in generating a random numbers and moments of order statistics and L-

moments.The rest of the chapter is organized as follows. In section 2, we provide the properties, the 

expansions for the P.D.F and C.D.F, the moments and moment 0 generating function and deals with 

order statistics in sections 3, the Re nyi Entropy, Quantile function, Skewness and Kurtosis, in section 

4. In section 5, we employed the simulation study, Bayesian and maximum likelihood estimations 

for comparison of the new model with some sub and existing models applying a real dataset. Finally, 

concluding remarks in section 6 and acknowledgment are addressed in section 7 respectively. 

 

1.1. Kumaraswamy-G (Kum-G) Family of Distribution 

Kum-G family received a quite well attention in the recent years in the area of applied statistics 

proposed by [4], having C.D.F and P.D.F define respectively as: 

 

FKum−G(t;ϕ,ψ) = 1 − [1 − G(t)ϕ]ψ. (4) 

fKum−G(t;ϕ,ψ) = ϕψg(t)G(t)(ϕ−1)[1 − G(t)ϕ](ψ−1). (5) 

 

where, ) and ϕ,ψ > 0 denotes the shape parameters on the notion for other 

parameters in the baseline distribution. Kum-G class family by [4], received a quite well attention to 

researchers in the last few decades in the literatures by some authors, like: [5, 6, 7, 8, 9, 10, 11, 12] 

respectively. 

 

1.2. Motivations for Choosing Kumaraswamy-G Family. 

Furthermore, the basic motivations for the Kum-G family in practice are as follows: 

To make the kurtosis more flexible compared to the baseline model; 

To produce a skewness for symmetrical distributions; 

To construct heavy-tailed distributions for modeling real data; 

 To generate distributions with symmetric, left-skewed and right-skewed. 

To define special models with all types of the hazard rate function; 

To provide consistently better fits than other generated models under the same underlying 

distribution. 

 

1.3. Burr Type X (BX) Distribution 

This model was proposed by [13] and revisited by [14], whom contribute a lot to family of continuous 

distributions and played a vital role in medical, survival and reliability analysis. The second 

motivation arises to the failure or hazard rate function having some important features including the 

Burr-Type X (BX) by [13] property which exhibits the fitting of engineering and medical datasets, 
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more especially big data, as it was recently observed by [14, 18], that BX model is very effective and 

versatile in modeling reliability strength and lifetime datasets. They also thought BX model can be 

exponentiated Rayleigh (ER) [19] or generalized Rayleigh (GR) [20], but they prefer calling it BX 

model due to its suitability to Burr family of distribution and properties. They observed that the GR 

or BX model with two-parameter also has a quite common properties with gamma, generalized 

exponential and Weibull distributions respectively. Although, the BX model density and cumulative 

distribution functions have a simple close form and its also has a convenient and flexible feature in 

modeling censored (incomplete) data, unlike gamma, GE and Weibull distributions. The two-

parameter BX has a monotonically increasing and decreasing hazard function features, which can be 

used for practical aspects in statistical distribution and modeling of applications. Recently, authors 

have been studying BX model due to its ability and flexibility in modeling reliability datasets such 

as, [18]. Surless and Paglet [14] introduced the two parameter Burr type X distribution where authors 

like: [16, 17] made some extension. The Burr type X distribution can be used in modeling general 

lifetime data. Based on this model distribution in [13], whose CDF and PDF are given by: 

 

−(τt)2 ϑ 

FBX(t;ϑ,τ) = {1 − e } .                                                         (6) 

fBX(t;ϑ,τ) = 2ϑτ2te−(τt)2{1 − e−(τt)2}(ϑ−1). (7) 

 

where ϑ and τ are the shape and scale parameters respectively. The two parameters BX or GR model 

in equation 7 above, implies BX(ϑ,τ), if ϑ = 1, BX distribution reduces to a well-known one parameter 

Rayleigh distribution. If ϑ 6= 1, this plays the role of τ, which is the scale parameter. On the other 

hand, if , therefore the P.D.F of BX model will be decreasing function of the model while for

, it proves that it is a unimodal right skewed function. If it has a mode written as , where to is 

called the non-linear systems of equation given as: 

 

 2 −t2 2 

 1 − 2t − e (1 − 2ϑt) = 0. 

 

The above mode of BX model shows clearly that it is decreasing function of the scale parameter τ 

and also the increasing function of ϑ respectively. The P.D.F figures at different forms resemble that 

of Weibull and gamma functions. Moreover, the median of the BX model occurs when the given 

quantile at: 

 

 
 

and this also shows that the non-increasing form of τ, and the non-decreasing form of ϑ. 

 

1.3.1. Motivations for Choosing Burr Type X as a Baseline Distribution 

The motivations for choosing Burr Type X distribution are as follows: 

 It is quite common to the two-parameter gamma, Weibull and generalized exponential distributions. 

The density function of Burr Type X has close form. 

The Burr Type X can be used very conveniently even for censored data unlike Burr Type XII [41] 

which yields to fit only uni-modal dataset. 

Unlike Burr Type XII, gamma, Weibull and Generalized exponential distributions, it has non-

monotone hazard form which can be very useful in many practical applications [41]. 

The Burr Type X hazard function is monotonically increasing, monotonically decreasing and bathtub 

shapes unlike Burr Type XII which has similar properties having a non-monotone h(t) [42]and also 

allocate so many shapes, as well as gamma, Weibull and Generalized exponential distributions with 

only monotonically increasing, monotonically decreasing shapes respectively. 
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The Burr Type X model, as a special case to the due to the relative flexibility of its hazard function 

and the ease for estimation of its parameters, ever since it has been widely used for analyzing 

reliability and agricultural lifetime data. 

 

1.4. Kumaraswamy Burr Type X (Kum-BX) Distribution 

We Introduced a new model called Kum-BX with four parameters (θ = ϕ,ψ,ϑ,τ), which was a sub-

model to the so-called Kumaraswamy-G family stated above by [4]. our proposed new model by the 

method of adding parameter and model by [23], having a P.D.F given as: 

 

2 −(τt)2 −(τt)2 (ϑϕ−1) fKum−BX(t,ϕ,ψ,ϑ,τ) =2ϕψϑτ te {1 − e }× {1 − (1 − e−(τt)2)(ϑϕ)}(ψ−1), (8) 

 

A random variable T, with P.D.F (θ = ϕ,ψ,ϑ,τ) is said to follow the Kum-BX with parameters ϕ,ψ,ϑ,τ 

> 0 or T ∼ Kum − BX(ϕ,ψ,ϑ,τ). The corresponding cumulative distribution function (C.D.F), survival 

function S(t) or Reliability function R(t), hazard function h(t), cumulative hazard function H(t) are 

all given as follows: 

 FKum−BX(t,ϕ,ψ,ϑ,τ) =1 − (1 − {1 − e−(τt)2}ϑϕ)ψ.             (9) 

 

                                                                           

(10) 

 

 

 

 

1.4.1. Motivations for KBX Distribution 

The motivation for choosing KBX model are as follows: 

Model flexibility due to number of shape parameters provided. 

Ability to tackle and solve an old problem by proposing a joint model. 

We were motivated to introduced a new model called the KBX model with four (θ = ϕ,ψ,ϑ,τ) 

parameters distribution which generalized many of its baseline distributions and sub-models as well 

as the properties and flexibility of the model. 

The fact that, this new model consists of several varieties of model fitting many areas of applied 

statistics, engineering, medicine and agriculture. 

It was noted from the above C.D.F of the new model equation 9, FKum−BX(t,θ) m1Y as t → 0 also 1 − 

FKum−BX(t,θ) ∼ m2 exp−(τt)2 as t → ∞ where m1 and m2 denotes the model constraints.These two 

models serve as a generalization to other existing models which are very flexible and versatile models 

with properties of their densities which can be expressed as a mixture of many sub-models of 

Kumaraswamy-G families. For example, Burr Type X, Beta exponential, generalized exponential 

and Rayleigh distributions respectively. This new model Kum-BX encloses a lower tail performance 

for the exponentiated Rayleigh model and the upper tail acts like the Burr-Type X model. The new 

model Kumaraswamy Burr-Type X motivates us with its great varieties and has a common property 

with Kumaraswamy-Weibull(kum-W) proposed by [18] model relating to flexibility and suitability 

towards failure data where these two are sub-model to each other but kum-W is better than our 

proposed new model which Kum-BX serve as an alternative to Kum-W model. We consider the last 

motivation, is empirical based we provide the model Kum-BX be more profitable than some six (6) 

among of the known two-parameter and threeparameter models with respect to a real censored data. 
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Additionally, KBX is the modification of Beta Kumaraswamy Burr Type X (BKBX) and also its 

reduce sub-model, where its more advantageous and less time consuming in modeling life time data 

and simulations based on the comparison with the original one, which is the BKBX model from the 

generalized family proposed by [37] and also the baseline BX model with two parameters ϑ and τ 

respectively. 

 

On the other hand, The Figure 8 and Figure 9 below, described the shapes of the PDF and CDF for 

the given parameter values. These functions represent different kind of forms depending on choosing 

values of KBX model parameters. We noticed that the additional shape parameters provide a high a 

level of flexibility. The figures below, shows the failure rate or hazard function of Kum-BX model 

increasing and decreasing or bathtub shapes. The Kum-BX distribution with four parameters is more 

flexible than the original Burr type X distribution with four and two parameters due to flexibility of 

Kumaraswamy distribution with two parameters, that leads more smooth and vital. This new model 

will be useful in modeling and analyzing real life, censored and uncensored data in 

110medical, engineering, pure science and agricultural areas. 

 
(a) Probability Density Function 1.              (b) Probability Density Function 2. 

Figure 1: Plot of the Kum-BX probability density function (PDF) for different parameter values of 

ϕ,ψ,ϑ and τ. 
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CDF of Kum−BX 

  CDF  

 t  

(a) Cummulative Distribution 

Function. 

         (b) Cummulative     

Distribution 

Function. 

 

Figure 2: Plot of the Kum-BX cumulative distribution function (CDF) for different parameter 

values of ϕ,ψ,ϑ and τ. 

 
 (a) Hazard Function 1. (b) Hazard Function 2. 

Figure 3: Plot of Kum-BX hazard function at different parameter values of ϕ,ψ,ϑ and τ. 

 

2. PROPERTIES 

2.1. Limit Behavior 

Lemma 2.1. Refer to equation 8, the limit behavior for the probability density function of the Kum-

BX with four parameters when t → 0 and t → ∞ 

lim θ(t,ϕ,ψ,ϑ,τ) = 2ϕψϑτ2te−(τt)2{1 − e−(τt)2}(ϑϕ−1) t→∞−(τt)2 (ϑϕ) (ψ−1){1 − (1 − e)}= 0 

2 −(τt)2 because lim = 2ϕψϑτ te = 0 t→∞ 

on the other hand, as t → ∞, we observed that by substituting the limit t → 0 with t → ∞ , the above 

expression limit behavior deduces to zero. 

2.2. The Expansion oF PDF and CDF 

3 4 5 6 1 2 

ϕ =4.0 , ψ =0.8 ,  ϑ =7.5 ,  τ =0.7 
               

ϕ =3.0 , ψ =0.7 ,  ϑ =4.7 ,  τ =0.6 
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ϕ =6.3 , ψ =5.0 ,  ϑ =5.4 ,  τ =0.6 
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λ 
 

=0.4 
α =6.50 , β , =0.5 

 
θ =1.0 , 
 
λ 
 

=0.7 
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For the Kum-BX parameters: 

θ = ϕ,ψ,ϑ,τ. 

We adopt the use of binomial expansion by [19]. If ψ > 0 is a real non-integer, for the expansion 

series representation we use, 

 

 , (11) 

 

The binomial expansion coefficient is defined for real number. From the expansion in equation 11 

we can write the Kum-BX density function expansion as: 

∞ 

 fKum − BXexp. = fKum−BX XwiFBX(t)ϑϕ(i+1)−1, (12) 

i=0 

 

If the parameters ϕ and ψ are integers equation 11 shows that density function of Kum-BX equals to 

the density of the BX distribution multiply by the infinite power series of the cumulative density 

function of BX model. 

Where the coefficients are : , 

i−1 

Finally, it written as : fKum−BX(t;ϕψϑτ) = 2ϕψϑτ2 Xωi[fBX(t,ϑτ)]l. (13) 

l=0 

 

On the other hand if the parameters are non-integer, we can expand: 

 

FKum−BX(t;ϕ,ψ,ϑ,τ)ϑϕ(i+1)−1,We can expand the C.D.F with the below given form: 

 

−(τt)2)ϑϕ ψ 

 FKum−BX(t) = 1 − {1 − e} . 

 

we also used the incomplete beta function [19] and obtained: 

 

. 

 

On the other hand, the expansion can be derived as proposed by [19], 

 

ϕ+ψ−1ϕ+ψ−1−ϑ 

FKum−BX(t) = X Xηϑ,τ(−1)τ[[−FKum−BX(t)]ϑ+τ. 

 ϑ=ϕ τ=0 

(14) 

. 

 

2.3. Some few Special Sub-models of Kum-BX 

 The Kum-BX has several special cases or sub models but among are few stated below: 

 When ϕ ∗ ϑ = α, ψ = 2, therefore, equation 8, above will transforms to Kumaraswamy-Weibull 

distribution with four parameters. 

 

 When ϑ = τ = 1, therefore, equation 8, above will reduces to Kumaraswamy distribution with two 

parameters. 
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 When ϕ = ψ = 1, therefore, equation 8, above will reduces to Burr type X distribution with two 

parameters. 

 

 When ϕ = ψ = 2, therefore, equation 8, above will reduces to generalized exponential distributions 

with two parameters. 

 

 When ϕ = ϑ = τ = 1, therefore, equation 8, above will reduces to Rayleigh distribution with one 

parameter. 

 

3. The Probability Weighted rth Moments 

Probability weighted rth moments (PWMs), was initially introduced by [13], defined to be the 

expectation of some functions of a random variable x and y defined. The (m,n,r)th PWM of T is 

defined by: 

 

  (15) 

 

 From the above equations 13 and 14 the sth moment of T can be written either 

As 

 

 
 

j+ψ−1 

= X ηlΓs,l,0. 

j=0 

 

Were, 

 

 
 

is the PWM of Kum-G(ϕ,ψ) distribution. Therefore the moments of the KumBX (ϕ,ψ,ϑ,τ) can be 

transform by the PWMs of Kum-G(ϕ,ψ). This method can be used for estimating parameters quantiles 

of generalized distributions. 

 

Proceeding as the above sth moment of the rth order statistic Tr:n in the random sample of size n. 

k+l 

E(Trs:n) = X ξz Γs,0,z 

z=0 Where, ψj, ηl, ξz are define above. 

These follows an incomplete beta function [3]: 

  (16) 

  

 

 

ψ ϑϕ 
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Where, C 

 

 =0 j=0 =0 

 

3.1. Moment Generating Function (MGF) 

MGF of Kum-BX distribution can be obtained and expressed in form of exponential Kum-G family 

of distribution from the results we obtained in the moments above using equation (14) above, 

  (17) 

 ∞ s 

st and E(X ) = . 

s! 

 

 

 

 

 

 

(18) 

 . (19) 

 

Where MT(s) is the MGF of a KBX distribution. Where MT(s) is the MGF of a Kum-BX distribution. 

 

3.2. Order Statistics 

Some authors like: [14, 16] adopted this procedure by assuming a random sample from a population 

T1,T2,.,Tn from Kum-BX distribution with four parameters θ = ϕ,ψ,ϑ,τ. We denote Tr:n as the rth order 

statistics, given the P.D.F as: 

 

k+j 

 fr:nKum − BX(t) = X ξ
y
0 fKum−BX(t;(y + 1)). (20) 

y=0 

 

Therefore, 

 

 

. 

 

 Where τj and dj+r−1,k were stated and defined in the equations above. 

 

4. Renyi Entropy 

An entropy for a given random variable is called the measure of uncertainty used in many areas of 

research like applied statistics and engineering [2]. It is given by definition: 

 

 . (21) 
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where > 0 and = 1 for more details refer to [14]. Using binomial expansion in 8 we can express it 

by denoting: 

 

  (22) 

 

Therefore, we obtained the Renyi´ entropy by substituting Equation (22), in Equation (11) as follows: 

 

 
 

Thus, the R´enyi entropy is, (23) 

 

  (24) 

 

4.1. Quantile Function 

Let Qϕ,ψ,ϑ,ϕ(u) be the Kumaraswamy Burr-Type X quantile function with parameters ϑ and ϕ and let 

u  (0,1) be the parameter interval. The quantile function is the inverse of C.D.F of the new model 

given as : 

 

. 

 

Therefore, the quantile function of Kum-BX distribution is given below by taking the inverse 

making” t” the subject of the formula. 

 

 . (25) 

. 
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We also denote Z to be the random variable for Kumaraswamy. The above quantity is used to 

generate Kum-BX random variates due to the existence of the Kumaraswamy generators family to 

obtain Kumaraswamy random variables. On the other hand, If Z is a random variable follows a 

Kumaraswamy distribution with parameters, then Z is called the Kumaraswamy random variable 

with ϕ and ψ parameters, therefore, 

 

. 

 

This follows a the Kum-BX random variates model and also, equation 25 above, we can generalized 

and conclude that the median of Kum-BX is m of X is m = Qu(1/2). 

 
 (a) Skewness Shape 1. (b) Skewness Shape 2. 

 

Figure 4: Plot of the Kum-BX Skewness at different parameter values ϕ,ψ,ϑ and τ. 

 

4.2. Skewness and Kurtosis 

The Bowley skewness [20], is actually a statistical procedure to find the positive or negative skewed 

distribution on based on your data. It is the most popular tool procedure in finding a skewness fit 

given by. 

 

  (26) 

 

On the other hand, we have, the Moors kurtosis [21], can be calculated by using the formula given 

below: 

 

  (27) 
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4.3. Maximum Likelihood Function (MLE) 

Let T1,T2,...,Tn be a random sample of size n with observed values t1,t2,...,tn. We can estimate the 

Kum-BX model with four parameters θ = (ϕ,ψ,ϑ,τ) by the method of maximum 

likelihood, given the likelihood function as: 

 

 n n 

L(θ) = Y 2ϕψϑτ2tie−(τti)2 Y{1 − e−(τti)2}(ϑϕ−1) 

i=1 i=1 n 

 × Yn1 − (1 − e−(τti)
2)(ϑϕ)o(ψ−1). (28) 

i=1 

 

for ϕ > 0,ψ > 0,ϑ > 0,τ > 0. Let t = (t1,t2,,,,,tr)
T be a random sample of size r from Kum-BX with 

parameters Φ = (ϕ,ψ,ϑ,τ)T. Then the log-likelihood 

 
 (a) Kurtosis Shape 1. (b) Kurtosis Shape 2. 

Figure 5: Plot of the Kum-BX Kurtosis at different parameter values ϕ,ψ,ϑ and τ. function for is given 

by: 

 

  (29) 

 

By applying the partial derivatives of the equation 29 above with respect to ϕ,ψ,ϑ,τ components of 

the score vectors UΦ = Uϕ,Uψ,Uϑ,Uτ) and denoting: 

 

Ki =τti 

−K2 

Mi =e i Ri =1 − Mi 

equation 29 above deduce to: 
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 . (30) 

 

We obtained the following partial derivatives for each parameter: 

 

(31) 

 . (32) 

(33) 

(34) 

(35) 

 

 

 

 

 

 

 

 

 

 

 

Where ω(.) represents the digamma function obtaining the estimations of the score functions in 

equation 32, 33 34, 35, using the software” MAPLE” to simplify the solution respectively. The 

provision of interval estimation for the hypothesis test based on the new model unknown parameters, 

an information matrix of all the Kum-BX distribution. 

 

5. Simulation Study 

We adopt the Monte Carlo simulation study to access the performance of the MLE’s of ( ϕ,ψ,ϑ and 

τ). We generate different n sample observation from the quantile function in equation 25 above of 

the new model Kum-BX. The parameters are estimated by maximum likelihood method. We 

considered different sample size n =50, 150, 300 and 500 and the number of repetitions is 5000. The 

true parameters value as ϕ, ψ, ϑ and τ with three different sets of values, in Table 1, 2 and 3, of below 

shows the bias and mean squared error (MSE) of the estimate parameters at different parameter 

values. We observed that, when we increase sample sizes” n” the bias and mean square error for the 

Kum-BX model given below as: 

(ϕ,ψ,ϑ,τ) 

 

decreases with respect to the best estimation. 
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5.1. Inverse CDF method 

In this part we employ an algorithm that generate a sample of size n randomly from the ET −E(ET 

−E(ϕ;ψ;ϑ;τ) model for the parameters and sample size n. The simulation process has the below steps: 

 

1. Step 1. We set sample size” n”, and (θ = ϕ;ψ;ϑ;τ). 

2. Step 2. We set the initial value to for a random procedure. 

3. Step 3. We set j = 1 

4. Step 4. We generate U ∼ Uniform (0,1). 

5. Step 5. We set an Update to by using the Bayesian Simulation process. 

6. Step 6. If — , (moderately small, > 0 tolerance limit). Then, t∗ to the desired sample from 

F(t). 

7. Step 7. If — to − t| >, then, set to= t∗ and then proceed to step 5. 

8. Step 8. We repeat procedure steps from 4-7, for j = 1, 2,...,n and obtained t1,t2,...,tn. 

are close to zero also the mean square error becomes very much smaller. We simulate the model 

parameters by given true values as we can see the higher you increase the sample size” n” bias the 

smaller Mean square error becomes towards zero. 

 

5.2. Simulation Study Results 

Likewise, the red colour numbers indicates how the Bias and Root mean square errors are decreasing 

with increase of the sample sizes(n=50,150,300,500). 

 

Simulation Study Results: 
 

Table 1. The Bias and RMSE on Monte Carlo simulation for Parameters values θ=4,2,5.5,1.5. 

 

Sample size "n" True parameter value Mean Bias MSE 

50 

α=4  
β=2 
ϑ=5.5  
λ=1.5 

4.2050 
2.1534 
5.6288 
1.5112 

0.2050 
0.1534 
0.1288 
0.0112 

0.7392 
0.6813 
0.6672 
0.0079 

150 

α=4  
β=2 
ϑ=5.5  
λ=1.5 

4.0637 
2.0434 
5.5981 
1.5063 

0.0637 
0.0434 
0.0981 
0.0063 

0.2610 
0.1596 
0.3249 
0.0028 

300 

α=4  
β=2 
ϑ=5.5  
λ=1.5 

4.0267 
2.0075 
5.6080 
1.5058 

0.0267 
0.0075 
0.1080 
0.0058 

0.1183 
0.0494 
0.1112 
0.0010 

500 

α=4  
β=2 
ϑ=5.5  
λ=1.5 

3.9874 
2.0088 
5.5631 
1.5017 

-0.0126 
0.0088 
0.0631 
0.0017 

0.0387 
0.0218 
0.0534 
0.0004 

Likewise, the red color numbers indicate how the Bias and Root mean square errors are decreasing with increase of the 
sample sizes(n=50,150,300,500). 
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Table 2. The Bias and MSE on Monte Carlo simulation for Parameters values θ=4,2.5,5.5,2.5. 

 

 
Bayesian Estimation Using Gibbs Sampling Approach. 

We wish to obtain a sample from the multivariate distribution (1,...,d). We shall call this distribution 

the target distribution. In Bayesian statistics, the target distribution is the joint posterior distribution. 

The Gibbs sampler obtains a sample from (1,...,d) by successively and repeatedly simulating from 

the conditional distributions of each component given the other components. Under conditional 

conjugacy, this simulation step is usually straightforward [23,26]. The algorithm is as follows: 
 

Table 3. The Bias and MSE on Monte Carlo simulation for the parameter values θ=4,2,5.5,2.5. 

 

Sample 
size "n" 

True 
parameter 
value 

Mean Bias MSE 

50 

α=4 β=2 
ϑ=5.5 
λ=2.5 

4.2496 
2.2251 
5.6189 
2.5121 

0.2496 
0.2251 
0.1189 
0.0121 

0.8488 
0.8002 
0.7252 
0.0239 

150 

α=4 β=2 
ϑ=5.5 
λ=2.5 

4.0477 
2.0670 
5.5858 
2.5039 

0.0477 
0.0670 
0.0858 
0.0039 

0.2524 
0.2330 
0.3488 
0.0084 

300 

α=4 β=2 
ϑ=5.5 
λ=2.5 

4.0245 
2.0080 
5.6049 
2.5101 

0.0245 
0.0080 
0.1049 
0.0101 

0.0906 
0.0582 
0.1411 
0.0031 

Sample size "n" True parameter value Mean Bias MSE 

50 

α=4 
β=2.5 
ϑ=5.5 
 λ=2.5 

4.2529 
2.7822 
5.6170 
2.5079 

0.2529 
0.2822 
0.1170 
0.0079 

0.8976 
1.1090 
0.7653 
0.0214 

150 

α=4 
β=2.5 
ϑ=5.5  
λ=2.5 

4.0706 
2.5861 
5.6071 
2.5085 

0.0706 
0.0861 
0.1071 
0.0085 

0.3259 
0.3362 
0.3418 
0.0108 

300 

α=4 
β=2.5 
ϑ=5.5  
λ=2.5 

4.0066 
2.5257 
5.5979 
2.5051 

0.0066 
0.0257 
0.0979 
0.0051 

0.0964 
0.1156 
0.1655 
0.0035 

500 

α=4 
β=2.5 
ϑ=5.5  
λ=2.5 

3.9995 
2.5069 
5.5931 
2.5072 

-0.0005 
0.0069 
0.0931 
0.0072 

0.0468 
0.0493 
0.1099 
0.0018 
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500 

α=4 β=2 
ϑ=5.5 
λ=2.5 

4.0017 
2.0097 
5.5706 
2.5034 

0.0017 
0.0097 
0.0706 
0.0034 

0.0561 
0.0208 
0.0768 
0.0012 

 

• Initialize with θ = (θ1(0),...,θd(0)). 

• Simulate θ1(1) from the conditional distribution π(θ1|θ2(0),θ3(0),...,θd(0)). 

• Simulate θ2(1) from the conditional distribution π(θ2|θ1(1),θ3(0),...,θd(0)). 

• Continue sampling.... 

• Simulate θd(1) from the conditional distribution π(θd|θ1(1),θ2(1),...,θd(1)−1). 

• Iterate this procedure. 

 

Under mild regularity conditions, convergence of the Markov chain to the stationary 

distributionπ(θ1,θ2,...,θd). is guaranteed, so after a burn–in period (that is, a number of iterations for 

which the draws are discarded), the subsequent draws θ = (θ1(1),,θd(1),...,θ1(J),...,θd(J)). can be 

regarded as realizations from this distribution. As stressed, this procedure is valid in any situation 

where the requirement is a sample from a multivariate distribution. Applications have been 

concentrated in Bayesian statistics because the technique gives a sample-based approach to posterior 

inference in situations where most other approaches are either difficult or impossible [26,27]. 

 

According to the Bayes rule, the posterior distribution is proportional to the product of the prior 

distribution π(θ) and the likelihood L(θ) assuming the mixture model. Thus, the posterior summaries 

of interest were obtained from the simulated samples for the joint posterior distribution using standard 

MCMC procedures [25,26,27]. 

 

Under mild regularity conditions, convergence of the Markov chain to the stationary 

distributionπ(θ1,θ2,...,θd). is guaranteed, so after a burnin period (that is, a number of iterations for 

which the draws are discarded), the subsequent draws . can be regarded 

as realizations from this distribution. As stressed, this procedure is valid in any situation where the 

requirement is a sample from a multivariate distribution. Applications have been concentrated in 

Bayesian statistics because the technique gives a sample-based approach to posterior inference in 

situations where most other approaches are either difficult or impossible [22, 23, 24]. According to 

the Bayes rule, the posterior distribution is proportional to the product of the prior distribution π(θ) 

and the likelihood L(θ) assuming the mixture model. Thus, the posterior summaries of interest were 

obtained from the simulated samples for the joint posterior distribution using standard MCMC 

procedures [22]. 

 

5.4. Jeffreys Prior 

We assume the posterior density function of a gamma distribution with shape and scale parameters” 

ϕ” and ”ψ”. Jeffreys prior can be improper for many models. This prior gives strange results for 

multivariate θ and modifications have been proposed [22, 23].Its violates the likelihood principle and 

also gives an automated method for finding a non-informative prior for any parametric model, P(t|θ) 

[22]. The likelihood function gamma model is given by: 

 

 . (36) 

for ϕ,τ > 0. 
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We consider the first order derivative of both the parameters ∂ϕ
∂ logLi and ∂τ

∂ logLi all equating to zero 

with some fisher information matrix and we obtained the likelihood equations given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bias simulated samples of parameter estimates for Kum-BX at different sample sizes 

 

 . (37) 

 

Where  . The solutions for these equations provide the MLE 

205 for the parameters of the Gamma distribution. As closed form solution is not possible to evaluate 

the numerical techniques [24]. For all cases considered in this paper, we generated 25,000 samples 

for each parameter of interest. assume a burn in sample of size 10,000 to minimize the effect of the 

initial values used in the simulation process. The posterior summaries of interest was based on the 

210 10,000 samples, taking every 100th sample to have approximately uncorrelated values [23]. 

 

5.5. Results Remarks 

Its was shown in table 4, above that the estimates of the parameters were obtained as the median of 

Gibbs samples drawn from the joint posterior dis- 

215 tribution and we used the median rather than the mean since some simulated distribution were 

skewed in nature. Also we noted that all p values from (HW) Heidelberger and Welch convergence 

diagnostics [23], criteria do not reject the null hypothesis of stationary of the chains, since they are 

all larger or equal than 
 

Table 3. The posterior summaries for the parameters of the Kum-BX and other Existing models not including 

the long-term survival models based on (ACTG) Study [24]: 

 

Model Parameter Posterior 
median 

95%HPDa DIC HWc p 
value 

Geweke’s p 
value 

Kum-BX 

α  
β 
ϑ  

1.3148 
0.2346 
2.2565 

(1.4324,2.2399) 
(0.0436,0.2231) 
(1.6425,1.2342) 

144 0.654 
0.352 
0.389 

0.235 0.251 
0.277 
0.432 

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

50 150 300 500 

n 

α β θ λ 
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λ 0.0285 (1.3376,2.3074) 0.089 

Beta Weibull 

α 
β  
γ 

3.8116 
0.0806 
0.9084 

(1.3456,5.1237) 
(1.2096,1.2432) 
(0.4321,0.0987) 

140 0.314 
0.267 
0.453 

0.112 0.251 
0.307 

 λ 2.3126 (1.1214,2.2345)  0.546 0.223 

Generalized 
Exponential 

α 
λ 

2.4399 
2.3278 

(1,9664,5.2017) 
(1.2125,3.1348) 

135 0.783 
0.659 

0.384 
0.384 

 
Results Remarks: 

It was shown in table 3, above that the estimates of the parameters were obtained as the median of 

Gibbs samples drawn from the joint posterior distribution and we used the median rather than the 

mean since some simulated distributions were skewed in nature. Also, we noted that all p values from 

(HW) Heidelberger and Welch convergence diagnostics [26], criteria do not reject the null hypothesis 

of stationary of the chains, since they are all larger or equal than 0.05 level of significance. While the 

Geweke’s p values also suggest convergence, on the other hand these results show that, among all 

the models considered Generalized exponential distribution has the DIC, Deviance Information 

Criterion while Kum-BX and Beta Weibull distributions have similar DIC values, where strong 

evidence shows that Kum-BX has the highest probability density interval (HPDI) [27], and conclude 

that these models are better fitted by the data [24]. 

 

Maximum Likelihood Estimation 

Here, we apply data set to clarify the fitness of Kum-BX distribution is a better model than Burr type 

X and Rayleigh distributions. "The dataset consists of Data from BP Research, [13] and also 

climatological Illinois dataset by [7] were used for the validation and comparison of the new model 

with the existing models. The criterion like: Log-likelihood, Akaike Information Criterion, 

Consistent Akaike Information Criterion and Bayesian information criterion for the data set above so 

as to compare the models and to check which have least or smaller LL, AIC, AICC and BIC values. 

The distribution of the data is skewed to the right skewed. From all indication looking at the graph 

of the comparison below it clearly show that based on this data [13], fits beta and Kumaraswamy 

family of distributions, on the other hand Kumaraswamy-Burr Type X has the smallest (LL, AIC, 

AICC and BIC) values among the Exponential, generalized exponential, Beta exponential, Gompertz, 

Generalized Gompertz models. This suggest that the Kum-BX distribution is very good in modeling 

right skewed data. 

 

Table 5, above shows MLEs for the individual fitted model for the given data and the estimated (LL, 

AIC, CAIC and BIC) values and this model as fitted based on the above dataset was left skewed 

(Skewness= 0.96 and Kurtosis = 1.02). This proves that Kum-BX distribution is a good example for 

modeling right skewed datasets. Also, the likelihood ratio test with the hypothesis Ho : a = b = 1 

versus H1 : a , 1b , 1. Based on the data above ω = 18.123 > 5.991 = χ2;0.05, we therefore reject the 

Null hypothesis. For interval estimation and test hypotheses on the parameter, we obtain the observed 

information matrix 4 ∗ 4 where, also the results obtain indicates clearly that the Kumaraswamy-Burr 

Type X is a stronger with highest peak, flexible and vital to its sub-models (Burr Type X and 

Rayleigh) used here for fitting the data set. On the other hand, we have the 95 percent C.I for the 

parameters which are: Table 6, above shows the estimated (LL, AIC, CAIC and BIC) values and also 

the results obtain indicates clearly that the Kumaraswamy-Burr Type X is also stronger based on the 

histogram with highest peak compare to the other models used here for fitting the data set. On the 

other hand, we have the 95 percent C.I for the parameters which are: 
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[0.2024,1.0208],[0.0667,3.0891],[-0.0232,0.2982],[0.6271,2.1234]. 

 

This model as fitted based on the above dataset was right skewed (Skewness= 0.98 and Kurtosis = 

1.06). This proves this model is a good example for modeling right skewed datasets. Also, the 

likelihood ratio test with the hypothesis Ho: a = b = 1 versus H1 : a , 1,b , 1. Based on the data above 

ω = 23.025 > 5.991 = χ2;0.05, we therefore reject the Null hypothesis. 

0.05 level of significance. While the Geweke’s p values also suggest convergence [25], on the other 

hand these results shows that, among all the models considered generalized exponential distribution 

has the Deviance Information criterion (DIC) while Kum-BX and beta-Weibull distributions have 

similar DIC values, where a strong evidence shows that Kum-BX has the highest probability density 

interval (HPDI) [26] and conclude that these models are better fitted by 225 the data [34]. 

 

5.6. Maximum Likelihood Estimation 

We fit three datasets with these new model KBX to illustrate the potential of the distribution. The 

real data sets which we used are left-skewed, right skewed and approximately symmetric. In this 

application we use the method of maximum likelihood to estimate the parameters of the distributions. 

We use several criteria to compare the three models with the baseline model that is the BX 

distribution respectively. 

In real-life the methodology of any kind of is validate with application to prove the effectiveness and 

flexibility of the methods, model and approach in the field of applied mathematics, physics and 

statistics etc. Here, we apply data set to clarify the fitness of KBX distribution by comparing these 

new models their respective sub-model BX and other existing family of distributions respectively. 

 

The model selection criterion used for comparing the new models with sub models and other existing 

ones in this chapter are: the -2log-likelihood, Akaike information criterion, consistent Akaike 

information criterion Bayesian information criterion and Kolmogorov-Smirnov non-parametric 

goodness-of-fit test statistic for the datasets above so as to check the suitability of the data to the 

proposed and existing models, which have least value of the criterions, with respect to the right 

skewed, left skewed and approximate symmetry (normally) 245 respectively. 

 

5.7. Life of Fatigue Fracture of Kevlar 49/Epoxy (Right Skewed Dataset) 

The first data, was introduced by [38] were used for the validation and comparison of the new model 

with the existing models. An investigation of the lifetimes of Kevlar 49/epoxy round weight vessels 

that are subjected to a steady supported weight until vessel is pressure, usually known as static 

weakness or stress-crack respectively.  
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Table 5: The ML estimates, -2log-likelihood, AIC, AICc, BIC and (KSM) for the life of fatigue 

fracture of Kevlar dataset. 

Model MLE −2LL(θ) AIC AICc BIC K-

SM 

p-

value 

KBX ϕ 

=1.252 

ψ 

=0.886 

ϑ= 

4.646 τ 

=3.224 

121 252 255 266 0.119 0.418 

BKBX 

ν 

=1.378 

κ = 

2.467 

ϕ 

=6.349 

ψ= 

0.845 

ϑ 

=1.905 

τ= 

3.135 124 257 258 271 0.139 0.122 

 ϑ=3.532 127 265 276 288 0.155 0.146 

BX 

τ =1.027 

 
 

Table (5), presents the results of lifetimes of Kevlar 49/epoxy round weight vessels dataset and also 

provides the MLEs of parameters and goodness of fit statistics for BKBX, KBX and BX distributions. 

From Table (5), the values, −2LL(θ), (K-SM), AIC, AICc and BIC of KBX is the smallest compared 

to BKBX and BX distributions, and this means that KBX is the best fit to” life of fatigue fracture of 

Kevlar 49/Epoxy” dataset and also with the highest pvalue based on the goodness-of-fit test of 

Kolmogorov-Smirnov non-parametric approach. From Figure (7) it is apparent that the graph of pdf 

of KBX distribution is most suitable for” life of fatigue fracture of Kevlar 49/Epoxy” dataset. Also, 

from Figure (8) we can see that the CDF of the KBX distribution is very close to the empirical CDF. 

Also, we suggested that KBX handles the” life of fatigue fracture of Kevlar 49/Epoxy” data well and 

it is a good fit for right-skewed 
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Right Skewed Fitted Models 

 

 
x 

Figure 7: The histogram for Life of Fatigue for Kevlar Right Skewed Dataset. 

 

Empirical Distribution 

 

 
x 

Figure 8: The empirical distribution for Life of Fatigue for Kevlar Right Skewed Dataset.  

 

This proves that KBX distribution is a good example for modeling right skewed datasets. In this case, 

the likelihood ratio (LR) statistic for testing Ho versus H1 is ω∗ = 2[L(1,1,ϑ,τ) − L(ϕ,ψ,ϑ,τ)], where the 

L(ϕ,ψ,ϑ,τ) is the log-likelihood statistic for the new KBX distribution and L(1,1,ϑ,τ) is the 

270 log-likelihood statistic for the BX distribution respectively. The statistic ω is asymptotically (n 

→ ∞) distributed as Xk
2 where k is the number of parameters specified underHo. The LR test rejects 

Ho if the ω > ηρ where ηρ denote the upper 100ρ% point of the Xk
2 distribution. Given that, ω∗ = 

2[(127)−(121)] =12, the LR of the null hypothesis tests of BX vs KBX Ho: all the model are not 

independently versus H1 : all the model are independently distributed,. Based on the data ω = 12.0 > 

5.991 = χ2;0.05, we therefore reject the null hypothesis. 

 

 

 

 

0 2 4 6 8 10 

BX 
Kum−BX 
Beta Kum−BX 
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5.8. Strengths of 1.5 cm Glass Fibers (Left Skewed Dataset) 

The second dataset consists of 63 observations of the strengths of 1.5 cm glass fibers, originally 

obtained by workers at the UK National Physical Laboratory. 280 On the other side they fail to 

include the units of measurements in the work”. The data have also been analyzed by [22, 40]. 

 

The data set is given in Table (6), presents the MLE estimates for the parameters and the values of 

−2LL(θ),(K-SM), AIC, AICc and BIC statistics. 

 

The KBX, BKBX and BX distributions are applied to fit the data set. The values in Table (6), 

indicates that the KBX is a strong competitor and also with the highest p-value based on the goodness-

of-fit to BKBX and BX distributions used here for fitting the data. 

 

The KBX provides the best fit because it has the smallest value of statistics for the strengths of 1.5 

cm glass fibers data followed by the KBX distribution. 290 This data set has long tail to the left that 

is left-skewed or negatively-skewed. This example suggests that KBX fits very well the left-skewed 

data. Figure (9), provides the histogram while, Figure (10), provides the empirical CDF, showing 

KBX closer to it over BKBX and BX, this proves the flexibility of KBX is a 

 

Fitted Densities 

 

 
Strengh of 1.5 glass fiber 

Figure 9: The histogram for the Strengths of 1.5 cm Glass Fibers Left Skewed. 
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Empirical Distribution 

 

 
The strengths of 1.5 cm glass fibers dataset. 

Figure 10: The empirical distribution for the Strengths of 1.5 cm Glass Fibers Left Skewed 

Dataset. 

 

Table 6: The ML estimates, -2log-likelihood, AIC, AICc, BIC and (KSM) for the strengths of 1.5 

cm glass fibers dataset 

 

Model MLE -

2LL(θ) 

AIC AICc BIC K-

SM 

p-

value 

KBX 

ϕ 

=1.611 

ψ 

=0.564 

ϑ= 

4.748 τ 

=1.231 

14.999 40.1 41.8 49.7 0.167 0.893 

BKBX 

ν 

=0.342 

κ = 

4.217 ϕ 

=19.187 

ψ= 

6.675 ϑ 

=0.475 

τ= 

0.582 23.929 41.5 43 54.4 0.155 0.736 

BX 

ϑ=5.486 

τ 

=0.987 

32.905 51.9 52.1 56.1 0.215 0.623 

 

  
      

0.5 1.0 1.5 2.0 

ecdf 
BX 
Kum−BX 
Beta Kum−BX 
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stronger with highest peak showing the histogram and empirical distribution 

as it fits the strength of fiber glass left-skewed data perfectly better than the BKBX and the baseline 

BX distributions respectively. 

Table (6), shows results for the fitted model for the strength data and the estimated results of criterion 

and the p-values as fitted based on the above dataset was left skewed. This proves that KBX 

distribution is a good example for modeling left skewed datasets. Given that, ω∗ = 2[(32.905) − 

(14.999)] = 35.812, the LR of the null hypothesis tests of BX vs KBX Ho: all the model are not 

independently versus H1 : all the model are independently distributed,. The LR result indicates that 

the KBX is a very good for the strength of fiber glass dataset. Based on the data above ω = 35.812 > 

5.991 = χ2;0.05, we therefore 

reject the null hypothesis. The LR result indicates that the KBX is a very good fit for the strength of 

fiber glass dataset. 

 

5.9. Nicotine Measurements (Approximate Symmetry Dataset) 

The following data is about 317 in number of the nicotine which was compiled in 2004. It was 

generated by the Federal Trade Commission which is an independent agency of the US government 

by [39]. Table (7), shows MLE estimate for the individual fitted model for the” Nicotine 

measurements” data and the estimated −2LL(θ), AIC, AICc, BIC and (K-SM) values with highest p-

value, also the results obtained indicates clearly that KBX is flexible and vital to the existing models 

based on the nicotine measurement dataset. 

Table 7: The ML estimates, -2log-likelihood, AIC, AICc, BIC and (KSM) for the Measurements on 

Nicotine dataset. 

 

Model MLE 
-

2LL(θ) 
AIC AICc BIC 

K-

SM 

p-

valu

e 

KBX 

ϕ 

=0.216 

ψ= 

0.247  

ϑ 

=0.035 

220.67

2 449.344 

450.23

3 

456.09

2 

0.12

8 

0.74

4 

GG 

ψ= 

0.009 γ 

=0.089

6 

231.24

4 
 

455.488 

462.00

9 

467.22

4 

0.21

9 

0.53

2 

Gompertz 

ψ=0.10

9 γ 

=0.020 

235.33

1 

474.662 474.91

7 

478.48

6 

0.40

1 

0.21

3 

BE 

ν 

=0.524 

κ= 

0.085 ψ 

=0.235 

238.11

0 
482.239 

482.70

2 

480.97

6 

0.57

2 

0.30

2 

GE 

ϕ=0.90

2 ψ 

=0.021

2 

242.37

5 
484.271 

483.02

6 

481.59

5 

0.66

3 

0.02

1 

Exponentia

l 

ψ 

=0.022 

245.08

9 485.179 

488.56

3 

485.09

1 

0.77

3 

0.15

2 
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The Figure (11), for the plot of densities which compares the models with the histogram proves that 

KBX is closer to the histogram peak point than the existing among the generalized exponential, Beta 

exponential, Gompertz, gen 

 

Fitted Densities 

 

 
Nicotine Measurement 

Figure 11: The histogram for the Plot of KBX with existing models for the Nicotine Measurements 

Approximate Symmetry Dataset. 

 

Empirical Distribution 

 

 
x 

Figure 12: The empirical distribution for the plot of KBX with existing models for the Nicotine 

Measurements Approximate Symmetry Dataset. 
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eralized Gompertz, exponential distributions respectively. From all indication looking at the 

empirical CDF in Figure (12), for the comparison it clearly shows that based on this datasets KBX 

distribution is close to the empirical CDF. We therefore recommend that KBX is very good in 

modeling nicotine measurement data which is approximate symmetry (normally) datasets. 

the likelihood ratio (LR) statistic for testing Ho versus H1 is ω∗ = 2[L(1,1,ϑ,τ)−L(ϕ,ψ,ϑ,τ)], where the 

L(ϕ,ψ,ϑ,τ) is the log-likelihood statistic for the new 

KBX distribution and L(1,1,ϑ,τ) is the log-likelihood statistic for the all the non-nested models 

respectively. 

 

Given that, 

 

 KBX vs GG, ω∗ = 2[(231.244) − (220.672)] = 21.1, 

 KBX vs G, ω∗ = 2[(235.331) − (220.672)] = 29.3, 

 KBX vs BE, ω∗ = 2[(238.110) − (220.672)] = 34.9, 

 KBX vs GE, ω∗ = 2[(242.375) − (220.672)] = 43.4, 

 KBX vs E, ω∗ = 2[(245.089) − (220.672)] = 48.8. 

Where, 1 − χ2(ω∗,number of df of new model − nonnestedmodel) 

 

), to obtain the p-value, using R software respectively. This proves that KBX 

distribution is a good example for modeling symmetry datasets. Also, the LR test with the hypothesis 

Ho: all the model are not independently versus H1 : all the model are independently distributed. Based 

on the data, a comparison will be based on the new model KBX and the existing ones are as follows: 

 ω∗ = χ2
cal > χ2

tab = χn1−n2;0.05, at 0.05% level of significance we therefore reject the null hypothesis 

and conclude that base on the result of comparison the KBX proves to be the best model. 

 

6. Conclusion 

We introduced a new model called Kumaraswamy Burr-Type X (Kum-BX) with four parameters 

(ϕ,ψ,ϑ,τ) that extends the Kumaraswamy-G family, and Burr-Type X distributions by method of beta 

Kumaraswamy-G family which was proposed by [4]. Kum-BX serve as an alternative to 

Kumaraswamy-Weibull model, which is very flexible distribution that has increasing, decreasing and 

bathtub shapes in the hazard function. We obtain the distributional properties like: P.D.F, C.D.F, 

Hazard function and their expansions. Also, the statistical properties like: Renyi entropy, quantile 

function, Browley skewness, Moors kurtosis, etc. were also obtained. A simulation study at different 

sample sizes with parameter values was done to validate and compare the mean errors where 

increasing the sample size decreases the error. The parameters were estimated by using M.L.E and 

Bayes methods applying real data set by using the goodness of fit is clarified. This new model 

allocates a better fitness, flexibility and vital to use in many areas when the data follows and suits a 

Kumaraswamy Burr Type X distribution than some its sub and existing models and it is very good 

model for right skewed data. We assume that the new model and its generalizations may draw a valid 

recommended attention to several areas such as; agriculture, engineering, medical, survival/reliability 

analysis and economics among others. 
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