Automatic PCB Cutting Machine Using ESP32 and Arduino IoT Cloud with Enhanced Safety Features for TVET Education

Authors

  • Mastura Tumin Kolej Vokasional Sungai Buloh, Kolej Vokasional Sungai Buloh, 40160 Shah Alam, Selangor, Malaysia
  • Muhammad Nazhan Yusri Kolej Vokasional Sungai Buloh, Kolej Vokasional Sungai Buloh, 40160 Shah Alam, Selangor, Malaysia
  • Muhamad Naim Aiman Zamri Kolej Vokasional Sungai Buloh, Kolej Vokasional Sungai Buloh, 40160 Shah Alam, Selangor, Malaysia
  • Nurul Alia Maisara Jamri Kolej Vokasional Sungai Buloh, Kolej Vokasional Sungai Buloh, 40160 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.53797/ajvah.v6i1.9.2025

Keywords:

Automatic PCB, Arduino IoT Cloud, workshop safety, TVET education, ADDIE design, experiential learning

Abstract

The Fourth Industrial Revolution has accelerated the demand for automation and Internet of Things (IoT) systems, including in technical and vocational education. This study aims to design and develop a safer, more stable, and user-friendly automatic PCB cutting machine for use in TVET workshop environments. Key issues in manual methods and existing machines include unstable PCB holders, the absence of an emergency stop button and unstable control applications. Using the ADDIE model, the system was developed with an ESP32 microcontroller and the Arduino IoT Cloud platform. Continuity, voltage, and functionality tests showed the system operated successfully after tuning, was controllable both manually and remotely, and met safety and operational efficiency requirements. This study contributes to the development of compact automated systems suitable for experiential learning in technical education.

Downloads

Download data is not yet available.

References

Almashhadani, H. A., Deng, X., Al-Hwaidi, O. R., Abdul-Samad, S. T., Ibrahm, M. M., & Latif, S. N. A. (2023). Design of A new Algorithm by Using Standard Deviation Techniques in Multi Edge Computing with IoT Application. Ksii Transactions on Internet and Information Systems, 17(4), 1147–1161. https://doi.org/10.3837/tiis.2023.04.006

Baleboina, G. M., & Mageshvaran, R. (2023). A survey on voltage stability indices for power system transmission and distribution systems. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1159410

Beraún-Espíritu, M. M., Moscoso-Paucarchuco, K. M., Gutiérrez-Gómez, E., González-Ríos, R. C., Cárdenas-Bustamante, M. A., & Salcedo-Gonzales, J. C. (2023). Automation in the Food Industry: Design of a Machine for the Cutting of Native Potatoes. E3s Web of Conferences, 465. https://doi.org/10.1051/e3sconf/202346502050

Bhavya, A. R., & Sudharshan, K. M. (2025). Optimizing Energy Efficiency in Battery-powered IoT Devices through Hardware Optimization and Voltage Scaling. Engineering Technology and Applied Science Research, 15(2), 21769–21773. https://doi.org/10.48084/etasr.9640

Ciolacu, M., Tehrani, A. F., Beer, R., & Popp, H. (2017). Education 4.0-Fostering student’s performance with machine learning methods. 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging, SIITME 2017 - Proceedings, 2018-January, 438–443. https://doi.org/10.1109/SIITME.2017.8259941

de Morais, C. M., Kelner, J., Sadok, D., & Lynn, T. (2019). Simona: A proof-of-concept domain-specific modeling language for IoT infographics. Proceedings of the Annual Hawaii International Conference on System Sciences, 2019-Janua, 7108–7117.

Farisi, R. Al, Topan, P. A., Andriani, T., & Hidayatullah, M. (2023). Implementation of Esp32 Microcontroller on IoT-Based Automatic Pcb Screening Equipment. Journal Altron; Journal of Electronics, Science & Energy Systems, 2(01), 28–36. https://doi.org/10.51401/ALTRON.V2I01.1741

Gutnichenko, O., Bushlya, V., Zhou, J. M., & Stahl, J.-E. (2016). Tool Wear and Vibrations Generated When Turning High-chromium White Cast Iron with pCBN Tools. Procedia CIRP, 46, 285–289. https://doi.org/10.1016/j.procir.2016.04.005

Jebamani, S. A., & Winster, S. G. (2022). Localization of IoT edge devices. In Internet of Everything Smart Sensing Technologies.

Kristiani, E., Yang, C.-T., Wang, Y. T., & Huang, C.-Y. (2019). Implementation of an edge computing architecture using openstack and kubernetes. In Lecture Notes in Electrical Engineering (Vol. 514). https://doi.org/10.1007/978-981-13-1056-0_66

Li, X., Xu, H.-J., Qin, L.-L., & Zheng, L.-J. (2013). Design of the control system for full-color LED display Based on MSP430 MCU. Proceedings of SPIE the International Society for Optical Engineering, 8913. https://doi.org/10.1117/12.2032913

Mladjenovic, C., Monkova, K., Zivkovic, A., Knezev, M., Marinkovic, D., & Ilic, V. (2025). Experimental Identification of Milling Process Damping and Its Application in Stability Lobe Diagrams. Machines, 13(2). https://doi.org/10.3390/machines13020096

Mohanraj, R., Hari Chealvan, S., Pratheesh Kumar, S., Harish Knikhil, S., Ramshankar, C. S., & Udhayakumar, M. (2023). Internet of Things Based Remote Monitoring and Energy Consumption Analysis In CNC Machine. Aip Conference Proceedings, 2946(1). https://doi.org/10.1063/5.0178161

Mohanraj, R., Rajamani, R., Elangovan, S., Kumar, S. P., Sreekanth, T. G., Ramshankar, C. S., & Sugumar, R. (2023). IoT-enabled Condition Monitoring and Intelligent Maintenance System for Machine. In Futuristic Manufacturing Perpetual Advancement and Research Challenges. https://doi.org/10.1201/9781003270027-9

Mohsin, M., Rovetta, S., Masulli, F., & Cabri, A. (2025). Automated Disassembly of Waste Printed Circuit Boards: The Role of Edge Computing and IoT. Computers 2025, Vol. 14, Page 62, 14(2), 62. https://doi.org/10.3390/COMPUTERS14020062

Park, H., Ryu, K., & Hwang, T. (2013). Laser processing system development of large area and high precision. Proceedings of SPIE the International Society for Optical Engineering, 8607. https://doi.org/10.1117/12.2003998

Qurat-Ul-Ain, Hasan, O., & Saghar, K. (2018). Automatic Formal Verification of Digital Components of IoTs Using CBMC. 2018 15th International Conference on Smart Cities Improving Quality of Life Using ICT and Iot Honet ICT 2018, 88–91. https://doi.org/10.1109/HONET.2018.8551480

Shan Li, & Calderon, A. D. (2024). Research Status and Development Trend of Precision Cutting Technology. Journal of Physics Conference Series, 2784(1). https://doi.org/10.1088/1742-6596/2784/1/012025

Sinha, T., Kapur, M., West, R., Catasta, M., Hauswirth, M., & Trninic, D. (2019). Impact of Explicit Failure and Success-driven Preparatory Activities on Learning. Proceedings of the 41st Annual Meeting of the Cognitive Science Society Creativity Cognition Computation Cogsci 2019, 2804–2810.

Zhang, T.-Q., & Nie, H.-B. (2020). Cutting techniques of PCD and PCBN compacts. Euro PM 2018 Congress and Exhibition. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084161549&partnerID=40&md5=5ab19ae9902d1ad85ccf17bed4ed4a52

Downloads

Published

2025-07-05

How to Cite

Tumin, M., Yusri, M. N., Zamri, M. N. A., & Jamri, N. A. M. (2025). Automatic PCB Cutting Machine Using ESP32 and Arduino IoT Cloud with Enhanced Safety Features for TVET Education. Asian Journal of Vocational Education And Humanities, 6(1), 66–72. https://doi.org/10.53797/ajvah.v6i1.9.2025