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1.  Introduction 
Pineapple (Ananas comosus), a member of the Bromeliaceae family, is a significant tropical fruit crop with considerable 

global demand. It ranks third in worldwide tropical fruit consumption after bananas and mangoes (FAO, 2021). Malaysia 

is among the leading producers of pineapple in Southeast Asia, with Johor being the primary state of cultivation due to 

its vast peat soil areas, which are particularly suitable for the Gandul variety commonly used in the canning industry 

(Malaysian Pineapple Industry Board [MPIB], 2020). However, the productivity of pineapple has seen a notable decline 

in recent years, largely due to biotic stresses including the emergence of red tip disease (Nik Masdek et al., 2005; Ismail 

et al., 2006). 

 Red tip disease manifests with distinctive symptoms such as reddening of leaf tips, downward curling, leaf tip 

dieback, and reduced fruit size. These symptoms often appear six months after planting and lead to substantial economic 

losses in large-scale plantations (Vijiandran et al., 2001). Unlike mealybug wilt of pineapple (MWP), which has been 

associated with viral pathogens transmitted by Dysmicoccus spp. (Sether & Hu, 2000), the causal agent of red tip remains 

unclear. Although nematodes, particularly Paratylenchus spp., have been implicated, comprehensive diagnostic 

confirmation is still lacking (Caswell et al., 1990; Ismail et al., 2006). 

 The conventional method of red tip disease detection involves destructive laboratory-based techniques such as RNA 

extraction and polymerase chain reaction (PCR), which are time-consuming, labor-intensive, and not practical for large-

scale monitoring. This limitation highlights the need for rapid, non-invasive, and reliable tools for early detection. Remote 

sensing has emerged as a powerful technique for crop health monitoring and disease detection. Vegetation indices derived 

from reflectance data, such as the Normalized Difference Vegetation Index (NDVI), offer valuable insights into plant 

physiological status, chlorophyll content, and stress response (Sellers, 1985; Huete, 1988; Wang et al., 2022). 

 NDVI is calculated using the difference between near-infrared (NIR) and red reflectance, with healthy vegetation 

exhibiting high NIR and low red reflectance due to strong chlorophyll absorption and internal leaf structure (Gausman, 

1974; Qi et al., 1994). Changes in leaf pigment composition and structure due to stress or disease often result in 

measurable changes in NDVI, thus making it an effective indicator of plant health (Adams et al., 1999; Chappelle et al., 

1984). Recent advances in handheld optical sensors, such as the Greenseeker®, enable rapid, on-the-ground NDVI 

assessments with high spatial resolution and without damaging plant tissues (Mulla, 2013; Zhang et al., 2021). 

 Precision agriculture integrates technologies like remote sensing and NDVI-based tools to optimize crop 

management decisions, reduce yield variability, and enhance disease surveillance (Balasundram et al., 2006; Liu et al., 
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2023). In the context of pineapple cultivation, few studies have assessed the utility of NDVI for disease detection. 

Therefore, this study aimed to evaluate the potential of a handheld Greenseeker® NDVI sensor to differentiate between 

healthy and red tip-infected pineapple plants and to develop predictive models that support early and non-destructive 

diagnosis. 

 

2. Materials and Methods 

2.1 Study Area and Plant Material 
The study was carried out at Peninsular Pineapple Sdn. Bhd. (PPSB), Simpang Renggam, Johor, Malaysia, covering 

approximately 2,000 hectares of pineapple cultivation. Four one-hectare plots of SR36 variety pineapples were selected 

two plots each for 7-month and 11-month plantings. The SR36 cultivar is a hybrid between Gandul and Sarawak types. 

 

2.2 NDVI Data Collection 
Systematic sampling was employed by selecting every fifth planting bed, with two random plants per selected bed. A 

total of 80 plants per plot were evaluated. NDVI readings were collected using the Greenseeker® handheld sensor at a 

fixed distance of 20 cm from the plant canopy. Each NDVI value was the average of 10 readings per plant. 

 

2.3 Disease Severity Index 
Disease severity was calculated by the percentage of symptomatic leaves (reddening, tip dieback, curling) to the total 

number of leaves per plant. Symptoms were visually assessed and recorded concurrently with NDVI readings. 

 

2.4 Laboratory Confirmation 
To validate the presence of the red tip disease causal agent in symptomatic pineapple plants, laboratory-based molecular 

diagnostics were conducted. Leaf samples were collected from a subset of visually identified symptomatic and 

asymptomatic plants, cleaned, and preserved at −20 °C prior to analysis. A total of ten samples were processed, 

comprising eight symptomatic and two asymptomatic plant leaves. 

DNA was extracted from the leaf tissues using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, 

which is widely employed for isolating high-quality nucleic acids from plant tissues, particularly those rich in 

polysaccharides and polyphenolic compounds (Doyle & Doyle, 1987). The extracted genomic DNA was visualized via 

gel electrophoresis using 5% polyacrylamide gels stained with silver nitrate. Clear bands of approximately 8 kilobases 

were observed, confirming successful DNA extraction from both symptomatic and asymptomatic samples. 

Subsequently, nested polymerase chain reaction (nested PCR) was employed to detect phytoplasma-like 

organisms. Nested PCR is a highly sensitive technique that involves two successive rounds of PCR amplification using 

two sets of primers, which increases specificity and minimizes false negatives (Lee et al., 1993). The universal primer 

pairs used were P1/P7 for the first round and R16F2n/R16R2 for the second round, which target the 16S rRNA gene of 

phytoplasmas a conserved region widely used for phytoplasma identification in plant pathology studies (Gundersen & 

Lee, 1996). 

In the second round of amplification, four out of eight symptomatic samples produced visible amplicons of 

approximately 1,500 base pairs (bp), which is consistent with the expected size of phytoplasma-specific fragments. No 

amplification was detected in the asymptomatic samples, supporting the hypothesis that the red tip symptoms are 

associated with a phytoplasma-like organism. 

These molecular results suggest a potential phytoplasma involvement in red tip disease expression in pineapple. 

Although phytoplasmas have not been definitively identified as the sole causal agent, the presence of a 16S rRNA gene 

fragment in symptomatic plants indicates the likely presence of a phloem-limited pathogen contributing to the observed 

stress symptoms (Bertaccini & Lee, 2018). Further confirmatory studies such as sequencing and phylogenetic analysis 

are warranted to characterize the specific pathogen strain. 

 

2.5 Statistical Analysis 
Descriptive statistics, correlation, and regression analyses were performed using Statistix 8.1 and Minitab 14. Data 

normality was assessed via the Shapiro-Wilk test, and outliers were identified using Grubb’s test (Moore et al., 1999). 

Linear regression was used to develop prediction models for %DS based on NDVI. 

 

3. Results and Discussion 

3.1 NDVI and Disease Severity Descriptive Statistics 
Descriptive analysis was conducted on NDVI values and percentage of disease severity (%DS) collected from 7-month 

and 11-month-old pineapple plants (Table 1). The mean NDVI for 7-month-old plants was 0.724 (SD = 0.107), and for 

11-month-old plants, it was slightly higher at 0.766 (SD = 0.097). In contrast, the mean %DS was 47.2% for 7-month-

old plants, indicating higher symptom intensity, while the 11-month-old plants showed a lower %DS at 43.5%. 
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These findings suggest that younger plants exhibited more visible disease symptoms, potentially due to higher 

physiological sensitivity during the early vegetative stage. This aligns with research indicating that early-stage plants 

tend to have higher susceptibility to biotic stresses due to underdeveloped structural and metabolic defense mechanisms 

(Pieterse et al., 2014; Hassan et al., 2020). 

 

Table 1: Descriptive statistics for NDVI and percentage of disease severity (%DS) for 7-month and 11-month-old 

pineapple plants.  

Plant Age Variable Mean Std. Dev. Min Median Max CV (%) 

7-month NDVI 0.713808 0.047874 0.589013 0.713652 0.812614 6.706868 

7-month %DS 47.08637 9.176112 28.01229 47.84397 71.83242 19.48783 

11-month NDVI 0.77512 0.041187 0.688994 0.777193 0.924109 5.313675 

11-month %DS 43.99726 8.674603 14.32859 43.90863 62.6973 19.71623 

 

3.2 Distribution Analysis and Data Normality 
Histograms plotted for NDVI and %DS datasets confirmed normal distribution after outlier removal (Figure 1). The 

data’s adherence to normality assumptions validated the use of parametric statistical analyses for correlation and 

regression. Normal distribution in NDVI datasets reflects consistent sensor readings across sampled plants, reinforcing 

the reliability of the Greenseeker® in heterogeneous field conditions. 

 

 
Fig. 1: Distribution of NDVI and disease severity (% DS) 

 

3.3 Correlation Between NDVI and Disease Severity 
Pearson correlation analysis revealed a strong negative correlation between NDVI values and %DS in both plots. For 7-

month-old plants, the correlation coefficient was r = -0.825 (p < 0.001), and for 11-month-old plants, it was even stronger 

at r = -0.876 (p < 0.001). These values indicate that as disease severity increases, NDVI values decline significantly 

(Table 2). 

 

Table 2: Correlation between NDVI and %DS 

PLOT R-VALUE P-VALUE 

PLOT 7 -0.825 0 

PLOT 11 -0.876 0 
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This inverse relationship corroborates previous studies where NDVI was shown to decrease under biotic stress due to 

chlorophyll degradation, reduced photosynthetic capacity, and disrupted canopy structure (Sellers, 1985; Gitelson et al., 

2003; Wang et al., 2022). Specifically, red tip disease appears to impair photosynthetic machinery, resulting in altered 

reflectance properties, particularly in the red and NIR spectra, which are key to NDVI computation. 

 

3.4 Regression Modeling for NDVI–Disease Relationship 
Linear regression models were constructed to quantify the relationship between NDVI and disease severity (Figure 2 and 

3). The regression equations were: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Regression of % DS vs NDVI (7-month pineapple) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Regression of % DS vs NDVI (11-month pineapple) 

 

Both models were statistically significant (p < 0.001) and showed high coefficients of determination, indicating 

that 68% and 75% of the variability in disease severity could be explained by NDVI readings for 7- and 11-month-old 

plants, respectively. The higher R² in older plants may reflect more stable physiological and structural traits that enhance 

spectral detection of disease-related changes. 

This modeling approach is consistent with findings in precision agriculture where NDVI-based regression 

models have been successfully used for predicting disease severity in wheat rust, tomato late blight, and rice blast (Zhang 

et al., 2021; Aravind et al., 2022; Liu et al., 2023). The effectiveness of NDVI as a predictor reinforces its utility as a 

non-destructive, rapid field assessment tool for disease surveillance. 
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3.5 Validation of Predictive Models 
To evaluate the accuracy of the regression models, predicted %DS values were plotted against observed values. Both 

models exhibited strong linear fits (R² = 0.71 for Model 1 and R² = 0.84 for Model 2), indicating a good agreement 

between measured and estimated disease severity (Figure 4). The tighter confidence and prediction intervals in Model 2 

further support the robustness of NDVI readings in more mature plants, where vegetative structure is better developed 

and more responsive to spectral reflectance-based monitoring (Mulla, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Model fit between measured and predicted % disease severity 

 

3.6 Laboratory Confirmation  
DNA extracted from symptomatic and asymptomatic leaves showed successful amplification of a ~1.5 kb phytoplasma 

band in four of eight symptomatic samples via nested PCR (Figure 5). No amplification occurred in asymptomatic 

samples (Figure 6), validating field-level symptom observations and Greenseeker® readings. 

 

 
 

Fig. 5: Analysis of CTAB extracted DNA for all the leaf samples. Bands of 8kb were observed as indicated by 

arrow 
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Fig. 6: Nested PCR analysis of DNA extracted by CTAB. Amplification of four set of universal primer (P1, P7; 

R16F2n, R16R2), and analyzed with 5% Polyacrylamide gel electrophoresis with silver staining 

 

The association between red tip symptoms and phytoplasma presence suggests that this pathogen plays a role in 

disease etiology, although further confirmation through sequencing and pathogenicity testing is warranted. This is in line 

with recent studies identifying phytoplasmas as common but under-detected causal agents in monocot diseases 

(Bertaccini & Lee, 2018; Kaminska et al., 2021). 

The integration of Greenseeker® NDVI sensing into disease monitoring workflows offers a practical, scalable 

alternative to destructive and time-consuming laboratory techniques. Real-time NDVI data could support precision input 

management, targeted field scouting, and temporal tracking of disease progression. Adoption of such technologies may 

significantly reduce yield losses in commercial pineapple plantations and improve sustainability in peat-based cropping 

systems (Balasundram et al., 2006; Liu et al., 2023). 

 

5. Conclusion 

This study successfully demonstrated the application of the Greenseeker® handheld NDVI sensor for assessing red tip 

disease in pineapple cultivated on peat soils. NDVI readings were strongly correlated with visually assessed disease 

severity and supported by molecular confirmation. The generated models can be used to differentiate between healthy 

and diseased plants at early growth stages, contributing to precision management and reducing reliance on destructive 

diagnostic methods. Future work should focus on validating these models across different environments and cultivars 

and integrating NDVI mapping into farm-level disease management systems. 
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